Black Scholes公式推导及求解
Black Scholes公式推导及求解 Part 2:降维至一维热力扩散模型
首先,回忆Black Scholes Equation,目标是通过一系列的换元和操作,最终实现将其转换成形如一维热力扩散模型的形式( ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \frac{\partial p}{\partial t'}=c^2\frac{\partial^2p}{\partial y^{'2}} ∂t′∂p=c2∂y′2∂2p)。
∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V = 0 \frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV=0 ∂t∂V+21σ2S2∂S2∂2V+rS∂S∂V−rV=0 (1)
第一步(PV->FV转换):
preset value改成future value表示,即: V ( S , t ) = e − r ( T − t ) U ( S , t ) V(S,t)=e^{-r(T-t)}U(S,t) V(S,t)=e−r(T−t)U(S,t)
接着,分别对S求一阶导、二阶导;对t求一阶导则可得到:
{ ∂ V ∂ S = e − r ( T − t ) ∂ U ∂ S ∂ 2 V ∂ S 2 = e − r ( T − t ) ∂ 2 U ∂ S 2 ∂ V ∂ t = r e − r ( T − t ) U + e − r ( T − t ) ∂ U ∂ t ( 根 据 链 式 法 则 ) \begin{cases} \frac{\partial V}{\partial S}=e^{-r(T-t)} \frac{\partial U}{\partial S} \\ \frac{\partial^2V}{\partial S^2}=e^{-r(T-t)}\frac{\partial^2U}{\partial S^2} \\\frac{\partial V}{\partial t}=re^{-r(T-t)}U+e^{-r(T-t)}\frac{\partial U}{\partial t} (根据链式法则)\end{cases} ⎩⎪⎨⎪⎧∂S∂V=e−r(T−t)∂S∂U∂S2∂2V=e−r(T−t)∂S2∂2U∂t∂V=re−r(T−t)U+e−r(T−t)
Black-Scholes模型的热力扩散转换

最低0.47元/天 解锁文章
8126






