Black Scholes公式推导及求解 Part 2:降维至一维热力扩散模型

Black-Scholes模型的热力扩散转换

Black Scholes公式推导及求解 Part 2:降维至一维热力扩散模型

首先,回忆Black Scholes Equation,目标是通过一系列的换元和操作,最终实现将其转换成形如一维热力扩散模型的形式( ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \frac{\partial p}{\partial t'}=c^2\frac{\partial^2p}{\partial y^{'2}} tp=c2y22p)。

∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V = 0 \frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV=0 tV+21σ2S2S22V+rSSVrV=0 (1)

第一步(PV->FV转换):

preset value改成future value表示,即: V ( S , t ) = e − r ( T − t ) U ( S , t ) V(S,t)=e^{-r(T-t)}U(S,t) V(S,t)=er(Tt)U(S,t)

接着,分别对S求一阶导、二阶导;对t求一阶导则可得到:

{ ∂ V ∂ S = e − r ( T − t ) ∂ U ∂ S ∂ 2 V ∂ S 2 = e − r ( T − t ) ∂ 2 U ∂ S 2 ∂ V ∂ t = r e − r ( T − t ) U + e − r ( T − t ) ∂ U ∂ t ( 根 据 链 式 法 则 ) \begin{cases} \frac{\partial V}{\partial S}=e^{-r(T-t)} \frac{\partial U}{\partial S} \\ \frac{\partial^2V}{\partial S^2}=e^{-r(T-t)}\frac{\partial^2U}{\partial S^2} \\\frac{\partial V}{\partial t}=re^{-r(T-t)}U+e^{-r(T-t)}\frac{\partial U}{\partial t} (根据链式法则)\end{cases} SV=er(Tt)SUS22V=er(Tt)S22UtV=rer(Tt)U+er(Tt)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值