Black Scholes公式推导及求解 Part 2:降维至一维热力扩散模型

Black Scholes公式推导及求解 Part 2:降维至一维热力扩散模型

首先,回忆Black Scholes Equation,目标是通过一系列的换元和操作,最终实现将其转换成形如一维热力扩散模型的形式( ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \frac{\partial p}{\partial t'}=c^2\frac{\partial^2p}{\partial y^{'2}} tp=c2y22p)。

∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V = 0 \frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV=0 tV+21σ2S2S22V+rSSVrV=0 (1)

第一步(PV->FV转换):

preset value改成future value表示,即: V ( S , t ) = e − r ( T − t ) U ( S , t ) V(S,t)=e^{-r(T-t)}U(S,t) V(S,t)=er(Tt)U(S,t)

接着,分别对S求一阶导、二阶导;对t求一阶导则可得到:

{ ∂ V ∂ S = e − r ( T − t ) ∂ U ∂ S ∂ 2 V ∂ S 2 = e − r ( T − t ) ∂ 2 U ∂ S 2 ∂ V ∂ t = r e − r ( T − t ) U + e − r ( T − t ) ∂ U ∂ t ( 根 据 链 式 法 则 ) \begin{cases} \frac{\partial V}{\partial S}=e^{-r(T-t)} \frac{\partial U}{\partial S} \\ \frac{\partial^2V}{\partial S^2}=e^{-r(T-t)}\frac{\partial^2U}{\partial S^2} \\\frac{\partial V}{\partial t}=re^{-r(T-t)}U+e^{-r(T-t)}\frac{\partial U}{\partial t} (根据链式法则)\end{cases} SV=er(Tt)SUS22V=er(Tt)S22UtV=rer(Tt)U+er(Tt)tU

将上面部分代入(1),Black Scholes Equation改写为(这里可以注意到 r V rV rV项消失了):

∂ U ∂ t + 1 2 σ 2 S 2 ∂ 2 ∂ S 2 + r S ∂ U ∂ S = 0 \frac{\partial U}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2}{\partial S^2}+rS\frac{\partial U}{\partial S}=0 tU+21σ2S2S22+rSSU=0 (2)

(注意到,BS等式成为了一个Backward Komogrove Equation)

第二步(时间转换):

τ = T − t \tau=T-t τ=Tt,则有: ∂ ∂ t = ∂ τ ∂ t ∂ ∂ τ = − ∂ ∂ τ \frac{\partial}{\partial t}=\frac{\partial\tau}{\partial t}\frac{\partial}{\partial\tau}=-\frac{\partial}{\partial\tau} t=tττ=τ [链式法则]

则(2)式可写为: ∂ U ∂ τ = 1 2 σ 2 S 2 ∂ 2 U ∂ S 2 + r S ∂ U ∂ S \frac{\partial U}{\partial \tau}=\frac{1}{2}\sigma^2S^2\frac{\partial^2U}{\partial S^2}+rS\frac{\partial U}{\partial S} τU=21σ2S2S22U+rSSU (3)

第三步(转成常系数(用log))

观察(3)式,恰有S的平方与S的二阶导,以及S和S的一阶导。而(3)式与热力扩散模型相比,RHS的系数仍然不是常系数,接下来,考虑通过log的方法,引入新变量 ξ \xi ξ,消除S。

回想我们对底层资产价格建模的时候,是基于资产价格的收益率是一个随机过程。

于是定义: ξ = l o g S \xi=logS ξ=logS

ξ \xi ξ我们可知: ∂ ∂ S = e − ξ ∂ ∂ ξ \frac{\partial}{\partial S}=e^{-\xi}\frac{\partial}{\partial\xi} S=eξξ ∂ 2 ∂ S 2 = e − 2 ξ ∂ 2 ∂ ξ 2 − e − 2 ξ ∂ ∂ ξ \frac{\partial^2}{\partial S^2}=e^{-2\xi}\frac{\partial^2}{\partial\xi^2}-e^{-2\xi}\frac{\partial}{\partial\xi} S22=e2ξξ22e2ξξ

进而我们推导出Black Scholes Equation的新形态,RHS变为常系数形式:

∂ U ∂ τ = 1 2 σ 2 ∂ U ∂ ξ 2 + ( r − 1 2 σ 2 ) ∂ U ∂ ξ \frac{\partial U}{\partial \tau}=\frac{1}{2}\sigma^2\frac{\partial^U}{\partial\xi^2}+(r-\frac{1}{2}\sigma^2)\frac{\partial U}{\partial\xi} τU=21σ2ξ2U+(r21σ2)ξU (4)

第四步(消除RHS中的一阶项):

观察(4)式可知,距离最终热力扩散模型形式( ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \frac{\partial p}{\partial t'}=c^2\frac{\partial^2p}{\partial y^{'2}} tp=c2y22p),RHS还多出了一个一阶项,想办法进行消除。于是考虑做有点类似坐标转换的操作,引入 x , τ 新 , U x,\tau_新,U x,τ,U

令:

x = ξ + ( r − 1 2 σ 2 ) τ 旧 x=\xi+(r-\frac{1}{2}\sigma^2)\tau_旧 x=ξ+(r21σ2)τ (5)

τ 新 = τ 旧 \tau_新=\tau_旧 τ=τ (6)

U = W ( x , τ ) U=W(x,\tau) U=W(x,τ) (7)

引入 x x x τ 新 \tau_新 τ后,某变量对 τ 旧 \tau_旧 τ的求导,实际上就是对 x x x τ 新 \tau_新 τ分别做偏微分。由链式法则可得:

∂ ∂ τ 旧 = ∂ τ 新 ∂ τ 旧 ∂ ∂ τ 新 + ∂ x ∂ τ 旧 ∂ ∂ x = ∂ ∂ τ 新 + ( r − 1 2 σ 2 ) ∂ ∂ x \frac{\partial}{\partial \tau_旧}=\frac{\partial\tau_新}{\partial\tau_旧}\frac{\partial}{\partial\tau_新}+\frac{\partial x}{\partial\tau_旧}\frac{\partial}{\partial x}=\frac{\partial}{\partial\tau_新}+(r-\frac{1}{2}\sigma^2)\frac{\partial}{\partial x} τ=τττ+τxx=τ+(r21σ2)x (8)

同理,某变量对 ξ \xi ξ求导,实际上也是对 x x x τ 新 \tau_新 τ分别做偏微分。由链式法则可得:

∂ ∂ ξ = ∂ τ 新 ∂ ξ ∂ ∂ τ 新 + ∂ x ∂ ξ ∂ ∂ x = ∂ ∂ x \frac{\partial}{\partial\xi}=\frac{\partial\tau_新}{\partial\xi}\frac{\partial}{\partial\tau_新}+\frac{\partial x}{\partial\xi}\frac{\partial}{\partial x}=\frac{\partial}{\partial x} ξ=ξττ+ξxx=x (9)

∂ 2 ∂ ξ 2 = ∂ 2 ∂ x 2 \frac{\partial^2}{\partial\xi^2}=\frac{\partial^2}{\partial x^2} ξ22=x22 (10)

将式(7)(8)(9)(10)代入(4)式,可得:

∂ W ∂ τ + ( r − 1 2 σ 2 ) ∂ W ∂ x = 1 2 σ 2 ∂ 2 W ∂ x 2 + ( r − 1 2 σ 2 ) ∂ W ∂ x \frac{\partial W}{\partial\tau}+(r-\frac{1}{2}\sigma^2)\frac{\partial W}{\partial x}=\frac{1}{2}\sigma^2\frac{\partial^2W}{\partial x^2}+(r-\frac{1}{2}\sigma^2)\frac{\partial W}{\partial x} τW+(r21σ2)xW=21σ2x22W+(r21σ2)xW

消元后,得到更加简化的Black Scholes Equation

∂ W ∂ τ = 1 2 σ 2 ∂ W ∂ x 2 \frac{\partial W}{\partial\tau}=\frac{1}{2}\sigma^2\frac{\partial^W}{\partial x^2} τW=21σ2x2W (11)

小结:

Part 2所做的工作可以总结为下式:

V ( S , t ) = e − r ( T − t ) U ( S , t ) = e − r τ U ( S , T − τ ) = e − r τ U ( e ξ , T − τ ) = e − r τ U ( e x − ( r − 1 2 σ 2 ) τ , T − τ ) = e − r τ W ( x , τ ) V(S,t)=e^{-r(T-t)}U(S,t)=e^{-r\tau}U(S,T-\tau)=e^{-r\tau}U(e^\xi,T-\tau)=e^{-r\tau}U(e^{x-(r-\frac{1}{2}\sigma^2)\tau},T-\tau)=e^{-r\tau}W(x,\tau) V(S,t)=er(Tt)U(S,t)=erτU(S,Tτ)=erτU(eξ,Tτ)=erτU(ex(r21σ2)τ,Tτ)=erτW(x,τ)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Black-Scholes模型是用于计算欧式期权价格的经典模型,其基本思想是在没有风险套利的情况下,基础资产的价格遵循几何布朗运动。下面是Black-Scholes模型的定价公式推导过程: 1. 基础假设:假设股票价格的变化满足几何布朗运动,即: $$dS = \mu S dt + \sigma S dz$$ 其中,$S$ 是股票价格,$\mu$ 是股票价格的平均收益率,$\sigma$ 是股票价格的波动率,$dz$ 是标准布朗运动,满足$dz \sim N(0,dt)$。 2. 定义期权价值:假设欧式期权到期时间为$T$,行权价格为$K$,则在时间$t$时,欧式看涨期权的价值为: $$C(t) = max(S(t) - K, 0)$$ 欧式看跌期权的价值为: $$P(t) = max(K - S(t), 0)$$ 3. 应用伊藤引理:根据伊藤引理,可以得到: $$dC = (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2})dt + \sigma S \frac{\partial C}{\partial S}dz$$ $$dP = (\mu S \frac{\partial P}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2})dt + \sigma S \frac{\partial P}{\partial S}dz$$ 4. 构造组合:构造一个包含欧式看涨期权和股票的投资组合,其价值为: $$X = C - \frac{S}{e^{r(T-t)}}$$ 其中,$r$ 是无风险利率,$e^{r(T-t)}$ 是当前时间$t$到到期时间$T$的连续复利计息因子。 5. 计算组合价值的变化:根据伊藤引理和组合的定义,可以得到: $$dX = dC - \frac{1}{e^{r(T-t)}}dS$$ $$= (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + rC)dt + \sigma S \frac{\partial C}{\partial S}dz - \frac{1}{e^{r(T-t)}}(\mu S dt + \sigma S dz)$$ $$= (\mu - r)Xdt + \sigma Xdz$$ 6. 应用Ito引理的逆向思路,得到组合的价值为: $$X(t) = e^{-r(T-t)}[C(t) - \Phi(d_1)S(t)]$$ 其中,$\Phi$ 是标准正态分布函数,$d_1$ 是: $$d_1 = \frac{ln(\frac{S(t)}{K}) + (r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$$ 7. 根据无套利原理,组合的价值等于期权的价值,即: $$C(t) = \Phi(d_1)S(t) - \Phi(d_2)Ke^{-r(T-t)}$$ $$P(t) = \Phi(-d_2)Ke^{-r(T-t)} - \Phi(-d_1)S(t)$$ 其中, $$d_2 = d_1 - \sigma\sqrt{T-t}$$ 这就是Black-Scholes模型的定价公式

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值