Black Scholes公式推导及求解 Part 1:BS Equation的推导

Black Scholes公式推导及求解 Part 1:BS Equation的推导

一、期权价格可以标识为关于标的资产价格S和时间t的函数

V ( S , t ; σ , μ ; E , T ; r ) V(S,t;\sigma,\mu;E,T;r) V(S,t;σ,μ;E,T;r)

其中:

  • S S S t t t是标的资产价格和时间

  • σ \sigma σ μ \mu μ是标的资产的波动率和收益率

  • E E E T T T是期权合约的行权价格和到期时间

  • r r r是无风险收益率

二、BS公式的6个假设:

  • 标的资产价格服从一个已知波动率的对数正态随机游走
  • 无风险利率是一个已知的关于时间的函数
  • 标的资产不分红
  • Delta Hedging可以基于连续时间来做
  • 底层资产的交易没有交易费用
  • 没有套利机会

三、推导过程

假设底层资产的价格变化可以表示为

d S = μ S d t + σ S d X dS=\mu Sdt+\sigma SdX dS=μSdt+σSdX

构建一个资产组合 Π \Pi Π,包含一份期权的多头头寸和 D e l t a Delta Delta份底层资产的空头头寸 ,资产组合的价值表示为:

Π = V ( S , t ) − Δ S \Pi=V(S,t)-\Delta S Π=V(S,t)ΔS

则资产组合的价值变动为:

d Π = d V − Δ d S d\Pi = dV-\Delta dS dΠ=dVΔdS (注意dt时间内, Δ \Delta Δ不变 ) (1)

由伊藤引理(Ito 4,引入高阶Ito要归功于Merton)得到

d V = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 d t dV=\frac{\partial V}{\partial t}dt+\frac{\partial V}{\partial S}dS+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}dt dV=tVdt+SVdS+21σ2S2S22Vdt ,将该式代入(1)得到

d Π = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 d t − Δ d S d\Pi = \frac{\partial V}{\partial t}dt+\frac{\partial V}{\partial S}dS+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}dt-\Delta dS dΠ=tVdt+SVdS+21σ2S2S22VdtΔdS (2)

此处关于Ito 4的另外一种写法

d V = ( ∂ V ∂ t + μ S ∂ V ∂ S + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 ) d t + σ S ∂ V ∂ S d X dV=(\frac{\partial V}{\partial t}+\mu S\frac{\partial V}{\partial S}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2})dt+\sigma S\frac{\partial V}{\partial S}dX dV=(tV+μSSV+21σ2S2S22V)dt+σSSVdX,将该式代入(1)得到

d Π = ( ∂ V ∂ t + μ S ∂ V ∂ S + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 ) d t + σ S ∂ V ∂ S d X − Δ ( μ S d t + σ S d X ) d\Pi=(\frac{\partial V}{\partial t}+\mu S\frac{\partial V}{\partial S}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2})dt+\sigma S\frac{\partial V}{\partial S}dX-\Delta(\mu Sdt+\sigma SdX) dΠ=(tV+μSSV+21σ2S2S22V)dt+σSSVdXΔ(μSdt+σSdX)

其中,dX项表示风险,要让风险=0,则 σ S ∂ V ∂ S − Δ σ S = 0 \sigma S\frac{\partial V}{\partial S}-\Delta\sigma S=0 σSSVΔσS=0, 可得 ⇒ Δ = ∂ V ∂ S \Rightarrow \Delta=\frac{\partial V}{\partial S} Δ=SV

(2)式中,dt项为确定项,dS项为随机项。要使得资产组合 Π \Pi Π是无风险组合,则随机项必须=0,可知:

Δ = ∂ V ∂ S \Delta=\frac{\partial V}{\partial S} Δ=SV (3)

则无风险组合 Π \Pi Π的变化:

d Π = ( ∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 ) d t d\Pi=(\frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2})dt dΠ=(tV+21σ2S2S22V)dt (4)

在无风险条件下, d Π d\Pi dΠ就相当于持有 Π \Pi Π这么多现金的银行存款,以无风险利率 r r r在时间 d t dt dt内产生的收益。在无套利情形下,下面等式两边的价值变等应相等则:

d Π = r Π d t d\Pi = r\Pi dt dΠ=rΠdt (5)

将(1),(4)带入(5),可得:

( ∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 ) d t = r ( V − S ∂ V ∂ S ) d t (\frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2})dt=r(V-S\frac{\partial V}{\partial S})dt (tV+21σ2S2S22V)dt=r(VSSV)dt

继而得到:

∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V = 0 \frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV=0 tV+21σ2S2S22V+rSSVrV=0 (6)

这就是Black-Scholes等式。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Black-Scholes模型是用于计算欧式期权价格的经典模型,其基本思想是在没有风险套利的情况下,基础资产的价格遵循几何布朗运动。下面是Black-Scholes模型的定价公式推导过程: 1. 基础假设:假设股票价格的变化满足几何布朗运动,即: $$dS = \mu S dt + \sigma S dz$$ 其中,$S$ 是股票价格,$\mu$ 是股票价格的平均收益率,$\sigma$ 是股票价格的波动率,$dz$ 是标准布朗运动,满足$dz \sim N(0,dt)$。 2. 定义期权价值:假设欧式期权到期时间为$T$,行权价格为$K$,则在时间$t$时,欧式看涨期权的价值为: $$C(t) = max(S(t) - K, 0)$$ 欧式看跌期权的价值为: $$P(t) = max(K - S(t), 0)$$ 3. 应用伊藤引理:根据伊藤引理,可以得到: $$dC = (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2})dt + \sigma S \frac{\partial C}{\partial S}dz$$ $$dP = (\mu S \frac{\partial P}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2})dt + \sigma S \frac{\partial P}{\partial S}dz$$ 4. 构造组合:构造一个包含欧式看涨期权和股票的投资组合,其价值为: $$X = C - \frac{S}{e^{r(T-t)}}$$ 其中,$r$ 是无风险利率,$e^{r(T-t)}$ 是当前时间$t$到到期时间$T$的连续复利计息因子。 5. 计算组合价值的变化:根据伊藤引理和组合的定义,可以得到: $$dX = dC - \frac{1}{e^{r(T-t)}}dS$$ $$= (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + rC)dt + \sigma S \frac{\partial C}{\partial S}dz - \frac{1}{e^{r(T-t)}}(\mu S dt + \sigma S dz)$$ $$= (\mu - r)Xdt + \sigma Xdz$$ 6. 应用Ito引理的逆向思路,得到组合的价值为: $$X(t) = e^{-r(T-t)}[C(t) - \Phi(d_1)S(t)]$$ 其中,$\Phi$ 是标准正态分布函数,$d_1$ 是: $$d_1 = \frac{ln(\frac{S(t)}{K}) + (r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$$ 7. 根据无套利原理,组合的价值等于期权的价值,即: $$C(t) = \Phi(d_1)S(t) - \Phi(d_2)Ke^{-r(T-t)}$$ $$P(t) = \Phi(-d_2)Ke^{-r(T-t)} - \Phi(-d_1)S(t)$$ 其中, $$d_2 = d_1 - \sigma\sqrt{T-t}$$ 这就是Black-Scholes模型的定价公式

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值