【无标题】

M3L6 Understanding Volatility

本章内容

  1. 期权就是赌波动率
  2. 波动率有几种类型
  3. 跟波动率有关的Greek:Vega。以及为什么它很危险
  4. 波动率套利:用隐含波动率还是实际波动率?
  5. 校准:波动率的期限结构
  6. 波动率微笑和局部波动率

学完可以:

  1. 知道波动率的实际应用
  2. 了解历史波动率和校准模型之间的差别
  3. 理解用Greeks来拆解风险,核对隐含波动率的影响
  4. Delta复制期权
  5. 波动率期限结构的拟合(bootstrapping)

1. 期权就是赌波动率

BS下的delta hedge是对冲了资产价格走向的风险敞口,但是仍保留了 ( Δ S ) 2 (\Delta S)^2 (ΔS)2的风险敞口。

Notes中原文是:That assumes the exposure to asset price direction is delta-hedged. Exposure to the magnitude of move ( Δ S ) 2 (\Delta S)^2 (ΔS)2 remains.

如何更好理解这句话 ?

看一个期权多头和一个underlying 空头的组合在一个时间步长后的价值变化

期权多头: V ( S + δ S , t + δ t ) = V ( S , t ) + ∂ V ∂ t ∣ t Δ t + ∂ V ∂ S ∣ S Δ S + 1 2 ∂ 2 V ∂ S 2 ∣ S ( Δ S ) 2 V(S+\delta S,t+\delta t)=V(S,t)+\frac{\partial V}{\partial t}|_t\Delta t+\frac{\partial V}{\partial S}|_S\Delta S+\frac{1}{2}\frac{\partial^2V}{\partial S^2}|_S (\Delta S)^2 V(S+δS,t+δt)=V(S,t)+tVtΔt+SVSΔS+21S22VS(ΔS)2

进而可得: d V = Θ Δ t + D e l t a Δ S + 1 2 Γ Δ S 2 dV=\Theta\Delta t+Delta\Delta S+\frac{1}{2}\Gamma\Delta S^2 dV=ΘΔt+DeltaΔS+21ΓΔS2

股票空头: d ( − Δ S ) = − ∂ V ∂ S Δ S = − D e l t a Δ S d(-\Delta S)=-\frac{\partial V}{\partial S}\Delta S=-Delta\Delta S d(ΔS)=SVΔS=DeltaΔS

所以,组合变动 d ( V − Δ S ) = 1 2 Γ S 2 σ 2 Δ t + Θ Δ t d(V-\Delta S)=\frac{1}{2}\Gamma S^2\sigma^2\Delta t+\Theta\Delta t d(VΔS)=21ΓS2σ2Δt+ΘΔt (式1,因为underlying是几何布朗运动,所以 ( Δ S ) 2 = S 2 σ 2 Δ t (\Delta S)^2=S^2\sigma^2\Delta t (ΔS)2=S2σ2Δt

在Black Scholes World,通过Delta Heding,可以有 d ( V − Δ S ) = 0 d(V-\Delta S)=0 d(VΔS)=0,进而可知 Θ B S = − 1 2 Γ S 2 σ B S 2 \Theta_{BS}=-\frac{1}{2}\Gamma S^2\sigma_{BS}^2 ΘBS=21ΓS2σBS2,其中 Γ S 2 \Gamma S^2 ΓS2被称为“Dollar Gamma”,起到缩放(Scaling)的作用。

Θ B S = − 1 2 Γ S 2 σ B S 2 \Theta_{BS}=-\frac{1}{2}\Gamma S^2\sigma_{BS}^2 ΘBS=21ΓS2σBS2代入式1,可得组合在单位时间步长的损益P&L= 1 2 Γ B S S 2 ( Δ S 2 S 2 Δ t − σ B S 2 Δ t ) \frac{1}{2}\Gamma_{BS}S^2(\frac{\Delta S^2}{S^2}\Delta t-\sigma_{BS}^2\Delta t) 21ΓBSS2(S2ΔS2ΔtσBS2Δt),其中:

Δ S 2 S 2 Δ t \frac{\Delta S^2}{S^2}\Delta t S2ΔS2Δt是Gamma带来的收益(抛物线收益),不固定,因为 ( Δ S ) 2 (\Delta S)^2 (ΔS)2不是固定的。

σ B S 2 Δ t \sigma_{BS}^2\Delta t σBS2Δt是Theta带来的损失,固定,因为整个期间 σ B S \sigma_{BS} σBS是固定已知的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KkkYmEyo-1650205321458)(C:\Users\Aaron Zhao\AppData\Roaming\Typora\typora-user-images\image-20220417132333621.png)]

上图即可说明,Gain是和 ( Δ S ) 2 (\Delta S)^2 (ΔS)2的大小成正比的(跟符号无关)。意味着对于 V − Δ S V-\Delta S VΔS的这样一个组合, ( Δ S ) 2 (\Delta S)^2 (ΔS)2越大使得收益越大,也就是说底层资产价格的变动(真实波动率)越大越好

Δ c a l l = ∂ C ∂ S = N ( d 1 ) \Delta_{call}=\frac{\partial C}{\partial S}=N(d_1) Δcall=SC=N(d1)

Γ c a l l = ∂ Δ ∂ S = N ′ ( d 1 ) S σ T \Gamma_{call}=\frac{\partial \Delta}{\partial S}=\frac{N'(d_1)}{S\sigma\sqrt{T}} Γcall=SΔ=SσT N(d1)

V e g e c a l l = ∂ C ∂ σ = S T N ′ ( d 1 ) Vege_{call}=\frac{\partial C}{\partial\sigma}=S\sqrt{T}N'(d1) Vegecall=σC=ST N(d1)

波动率越小,delta的CDF曲线越陡,gamma越大。

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Abmj9L6D-1650205321460)(C:\Users\Aaron Zhao\AppData\Roaming\Typora\typora-user-images\image-20220417144827577.png)]

2. 波动率的几种类型

∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V \frac{\partial V}{\partial t}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2}+rS\frac{\partial V}{\partial S}-rV tV+21σ2S2S22V+rSSVrV

C ( S , t ) = S N ( d 1 ) − E e − ( T − t ) N ( d 2 ) C(S,t)=SN(d1)-Ee^{-(T-t)}N(d_2) C(S,t)=SN(d1)Ee(Tt)N(d2)

P ( S , t ) = C ( S , t ) + E e − r ( T − t ) − S P(S,t)=C(S,t)+Ee^{-r(T-t)}-S P(S,t)=C(S,t)+Eer(Tt)S

d 1 = l o g ( S E ) + ( r + 1 2 σ ) ( T − t ) σ T − t d_1=\frac{log(\frac{S}{E})+(r+\frac{1}{2}\sigma^)(T-t)}{\sigma\sqrt{T-t}} d1=σTt log(ES)+(r+21σ)Tt

d 2 = l o g ( S E ) + ( r − 1 2 σ ) ( T − t ) σ T − t d_2=\frac{log(\frac{S}{E})+(r-\frac{1}{2}\sigma^)(T-t)}{\sigma\sqrt{T-t}} d2=σTt log(ES)+(r21σ)Tt

BS中假设波动率是固定不变的,但实际波动率是个顺势变化量,是基于S和t的函数 σ ( S , t ) \sigma(S,t) σ(S,t)

实际波动率(局部波动率)

  • 没有时间维度,非常小的局部
  • 瞬时量,总是在变化

d S = μ S d t + σ a S d X dS=\mu Sdt+\sigma_aSdX dS=μSdt+σaSdX

Historical/Realized Volatility

  • 过去一段时间的随机性的衡量。
  • 计算方式可能会不同于标准差。

比较受欢迎的一个模型:EGARCH

l n σ t 2 = α 0 + α 1 u t − 1 + γ 1 ∣ u t − 1 ∣ σ t − 1 + β 1 l n σ t − 1 2 ln\sigma^2_t=\alpha_0+\frac{\alpha_1u_{t-1}+\gamma_1|u_{t-1}|}{\sigma_{t-1}}+\beta_1ln\sigma^2_{t-1} lnσt2=α0+σt1α1ut1+γ1ut1+β1lnσt12

EGARCH对期权来说有个问题:对于长期方差平滑的强假设 σ ˉ = α 0 1 − α \bar \sigma = \frac{\alpha_0}{1-\alpha} σˉ=1αα0

替代方案:指数平滑(EWMA on variance)

σ t 2 = α 1 u t − 1 2 + λ σ t − 1 2 \sigma^2_t=\alpha_1u^2_{t-1}+\lambda\sigma^2_{t-1} σt2=α1ut12+λσt12,where α 1 > λ \alpha_1>\lambda α1>λ

将更多的权重给了上一期的收益率 u t − 1 u_{t-1} ut1

隐含波动率

将市面期权价格代入BSF计算得到的波动率就是隐含波动率,最终是个寻根问题(a root-finding method),用数值技术迭代搜索才可求解。

f ( σ ) = V ( σ ) − P M k t = 0 f(\sigma)=V(\sigma)-P_{Mkt}=0 f(σ)=V(σ)PMkt=0

有两种数值方法:1、bisection;2、Newton-Raphson(exercise中有讲,pythonlab中也有实现)

Bootstrapping:用隐含波动率去bootstrapping出真实波动率。

远期波动率和VIX

E [ ∫ 0 T σ 2 d t ] = 2 ∫ − ∞ 0 p ( k ) k 2 d k + ∫ 0 ∞ c ( k ) k 2 d k E[\int_0^T\sigma^2dt]=2{\int_{-\infty}^0\frac{p(k)}{k^2}dk+\int_0^\infty\frac{c(k)}{k^2}dk} E[0Tσ2dt]=20k2p(k)dk+0k2c(k)dk,k是执行价格。这个可以帮助我们得到波动率微笑曲线。

上式的离散化版本: σ 2 = 2 T ∑ i Δ K i K i 2 e R T Q ( K i ) − 1 T [ F K 0 − 1 ] 2 \sigma^2=\frac{2}{T}\sum_i\frac{\Delta K_i}{K^2_i}e^{RT}Q(K_i)-\frac{1}{T}[\frac{F}{K_0}-1]^2 σ2=T2iKi2ΔKieRTQ(Ki)T1[K0F1]2

对于期权卖方更有利,它是以 σ i m p \sigma_{imp} σimp来确定期权卖价,但是它是以 σ r e a l i z e d \sigma_{realized} σrealized来建立底层资产头寸对冲的,所以能够两种波动率之间的差价,因为绝大多数时候 σ i m p \sigma_{imp} σimp是大于 σ r e a l i z e d \sigma_{realized} σrealized的。但如果期权卖方不做对冲,他裸卖期权(naked option),就会暴露在极大的风险之下。

三种对实际波动率建模的方法

  • uncertain vol [ σ m i n , σ m a x ] [\sigma^{min},\sigma^{max}] [σmin,σmax]:将两个波动率代入BSF得到两个定价边界
  • deterministic vol σ ( t ) \sigma(t) σ(t):bootstrapping
  • local vol σ ( S , t ) \sigma(S,t) σ(S,t):将S加入

Bastard Greek:Vega

为什么Vega是个Bastard Greek?

因为当市场担心波动率会变大的时候,期权价格会被抬起来。同时,因为并没有什么很好的波动率预测方法(不管是uncertain vol/deterministic vol/local vol等),所以波动率预计不准,Vega也就不准了。而且,举二值期权的例子,会发现,Vega并不可靠(以一个二值期权的call为例:OTM的时候,波动率上升,期权价格上升;ITM的时候,波动率上升,期权价格下降)。

在这里插入图片描述

Delta says by how much the option price moves, if asset price moves(market risk on asset). Gamma estimates by how much Delta might change.

Vega says by how much the option moves if a perception of volatility changes(market risk of options market).

经验1:隐含波动率增大,会提高期权的价值

经验2:波动率越大,曲度越平滑

经验3:波动率越大,Gamma曲线越平滑

经验4:delta对冲难题,临到期的时候,波动率很低,意味着资产价格变动一点点,就要做数量比较大的delta对冲,进而付出很大的交易成本。

如何解读隐含波动率给我们的信息?

  1. 假设市场是错的,我们是对的。于是我们可以去套利。
  2. 假设市场是对的,我们只需要用一些数学把隐含波动率和真实波动率联系起来。

为什么可以认为市场是错的?

因为期权价格受到模型、违约风险、交易条件限制等很多因素影响,并不只是受到波动率影响。

Black Scholes模型的评价:

  • 不是一个用于资产价格建模或者预测资产价格波动率的好模型。
  • 不是一个确定期权公允价值的好模型。
  • 不是一个期权套利的好模型。

但是,BS是一个可以用于解读市场报价的很强的玩具模型。

  • understanding risk factos(Greeks)
  • estimate an option’s manufacturing cost(delta replication)

波动率套利

如果我们认为市场是错的,那么就可以做波动率套利(比如,市面隐含波动率是20%,我们认为实际波动率是35%)。

如何套利?

首先,分别利用 σ a \sigma_a σa σ i \sigma_i σi计算出对应的 Δ a \Delta_a Δa Δ i \Delta_i Δi

1. 用真实波动率对冲( σ a > σ i \sigma_a>\sigma_i σa>σi

买入期权(按隐含波动率定价,所以我们认为这个期权被低估,这是现金流出),然后卖出 Δ a \Delta_a Δa份标的资产(现金流入)。于是账面现金的情况是: − V i + Δ a S -V^i+\Delta^aS Vi+ΔaS

通过连续 Δ a \Delta_a Δa份标的资产,实际上是卖出了一份以真实波动率定价的期权 V a V^a Va(通过复制来实现)。我们知道 V a V^a Va是大于 V i V^i Vi的,所以我们可以赚一个净利润( V a − V i V^a-V^i VaVi)。

如何保证这个总利润呢(每一个时间步长上组合产生利润的总和)?

推导:

每日盯市,可知在t时刻,组合头寸(option+stock)和账面现金头寸(cash)的情况是:

Option V i V^i Vi
STOCK − Δ a S -\Delta^aS ΔaS
CASH − V i + Δ a S -V^i+\Delta^aS Vi+ΔaS

过了一个时间步长 d t dt dt之后,在 t + d t t+dt t+dt时刻,情况是

Option V i + d V i V^i+dV^i Vi+dVi
STOCK − Δ a S − Δ a d S -\Delta^aS-\Delta^adS ΔaSΔadS
CASH ( − V i + Δ a S ) ( 1 + r d t ) (-V^i+\Delta^aS)(1+rdt) (Vi+ΔaS)(1+rdt)

所以可知: P & L d t = d V i − Δ a d S − ( V i − Δ a S ) r d t P\&L_{dt}=dV^i-\Delta^adS-(V^i-\Delta^aS)rdt P&Ldt=dViΔadS(ViΔaS)rdt(式1)

考虑到,如果是正确定价在 V a V^a Va的话,则有: P & L = d V a − Δ a d S − ( V a − Δ a S ) r d t = 0 P\&L=dV^a-\Delta^adS-(V^a-\Delta^aS)rdt=0 P&L=dVaΔadS(VaΔaS)rdt=0(式2)

式1减去式2,可得 P & L d t = e r t d ( e − r t ( V i − V a ) ) P\&L_{dt}=e^{rt}d(e^{-rt(V^i-V^a)}) P&Ldt=ertd(ert(ViVa)),乘以折现因子可知:

PV of P & L d t = e − r ( t − t 0 ) e r t d ( e − r t ( V i − V a ) ) = e r t 0 d ( e − r t ( V i − V a ) ) P\&L_{dt} = e^{-r(t-t_0)}e^{rt}d(e^{-rt(V^i-V^a)})=e^{rt_0}d(e^{-rt}(V^i-V^a)) P&Ldt=er(tt0)ertd(ert(ViVa))=ert0d(ert(ViVa))

所以折现的总利润= e r t 0 ∫ t 0 T d ( e − r t ( V i − V a ) ) = V a − V i e^{rt_0}\int_{t_0}^Td(e^{-rt}(V^i-V^a))=V^a-V^i ert0t0Td(ert(ViVa))=VaVi,从而证明了用真实波动率做对冲套利的总利润是可以得到保证的。图形展示:每个时间步长上可能张可能跌,但最终会趋于一个固定水平。

在这里插入图片描述

2.用隐含波动率对冲(即我们认为 σ i \sigma_i σi是正确的, σ i = σ a \sigma_i=\sigma_a σi=σa

我们用股票价格的随机波动与期权价格的随机波动( d V i dV_i dVi)来相平衡,这个模型是不一致的,因为这个风险是由vega来衡量,隐含波动率则是会变的。 − V i + Δ i S -V^i+\Delta^iS Vi+ΔiS

经过推导,最终可以知道,用隐含波动率做对冲的话,总利润: 1 2 ( σ a 2 − σ i 2 ) ∫ t 0 T e − r ( t − t 0 ) S t 2 Γ i d t \frac{1}{2}(\sigma^2_a-\sigma^2_i)\int_{t_0}^Te^{-r(t-t_0)}S^2_t\Gamma^idt 21(σa2σi2)t0Ter(tt0)St2Γidt

因为S是随机的,所以总利润是不可预测的。

校准(Calibration)

  1. 通过不同期限的确定性的隐含波动率 σ B S \sigma_{BS} σBS,来推出实际波动率(bootstrapping,也叫分段插值法/直线内推法)。一般化的公式: σ ( t ) = T i − t ∗ T i − T i − 1 σ i m p 2 ( T i ) − T i − 1 − t ∗ T i − T i − 1 σ i m p 2 ( T i − 1 ) \sigma(t)=\sqrt{\frac{T_i-t*}{T_i-T_{i-1}}\sigma^2_{imp}(T_i)-\frac{T_{i-1}-t*}{T_i-T_{i-1}}\sigma^2_{imp}(T_{i-1})} σ(t)=TiTi1Titσimp2(Ti)TiTi1Ti1tσimp2(Ti1)
  2. 通过局部波动率(Local Volatility)来推出实际波动率。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值