贝叶斯线性回归(一)

      前段时间看完支持向量机(SVM),这两天在看相关向量机(RVM)。不同于SVM,RVM用贝叶斯的方法来解决有监督学习中经典问题回归和分类。同时,RVM还保留了SVM的一些特性,但是RVM的模型更为简单,对于同样的测试集似乎比SVM要快一点。关于更多SVM和RVM的比较是今后的任务,现在主要介绍下RVM的基本思想和原理。

      SVM是从二元分类问题发展开来的,而RVM是从回归问题扩展开来的。因此,在正式介绍RVM之前,想讲讲贝叶斯线性回归。

      观察值集合{xn},n=1, 2, ... , N,xi是维度为D的向量,以及相应的目标值集合{tn},组成了测试集。需要构造一个判别函数,对于一个新的输入x来预测它的目标值t。回归模型就是构造了一个从x到t的映射关系:

      其中为基函数,基函数是已知的,有多种形式可以选择。x是维度为D的向量,表示测试集中的观察值。w是维度M的向量,是我们要求的参数,这M个参数确定了,从x到t的映射也就确定了。当然还需要确定基函数的形式和M的大小,这就涉及到模型选择的问题,假设这些都是事先确定好的。通过测试集{xn}和{tn}来求M个参数w,就是一个训练的过程。

      最大释然概率(Maximum likelihood)可以求解这个回归问题,最后其实转化为一个最小二乘问题。不过现在我们用贝叶斯的方法,通过最大后验概率来解这个问题。

      后验概率 =  释然概率 x 先验概率,也就是p(w|t) = p(t|w) p(w)  这是基本的贝叶斯思想。很多随机变量的概率分布都可以近似地用高斯分布来描述,这里wt的概率分布都可以用多维高斯分布来模拟。首先确定先验概率p(w),先验概率是均值为0的高斯概率: p(w|a) = N(w|0, a-1I),其中a是一个参数,它控制了高斯分布的精度,需要我们确定。不使用一般性的高斯分布,是为了简化问题,否则要求的未知数太多。通常对于一个假设测试集中的目标值{tn}是通过判别函数y(x, w)的值加上高斯噪声得到的,那么对于一个目标值,它服从一个均值为y(x, w)的高斯分布:p(t|x, w, B) = N(t|y(x, w), B-1)。对于整个目标值集合{tn},假设每个目标值都是独立同分布的,那么由乘法定则得到:

      B也是要求的参数。这样实验概率分布p(t|w)也得到了。后验概率是释然概率和先验概率的乘积,因此后验概率的分布也满足高斯分布。参数w为使后验概率最大时的值,一般的做法是对后验概率取对数,然后转为释然概率和先验概率的对数和。最后我们会发现,还是要求解一个线性最小二乘问题,和最大释然概率得到的结果一样,只不过在系数上有些差别。求解最小二乘问题,已有很多种方法,比如比较常用的LM算法(http://www.ics.forth.gr/~lourakis/levmar/),LM算法可以解决更一般性的非线性最小二乘问题。

      之所以称之为贝叶斯线性回归,是因为虽然对于x来说,y( x, w)并不是线性的,但是 x是已知的,对于未知的 w,y( x, w)显然是线性的。还剩下一个问题求解两个高斯分布的参数a和B,这将在下一篇文章中做介绍。  
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值