三角形面积与三角函数
已知两边及其夹角的情况下——三角函数
在一个三角形中,有
a
,
b
,
c
a,b,c
a,b,c三条边以及
A
,
B
,
C
A,B,C
A,B,C三个角,它们与三角形面积的关系可写作
S
=
1
2
a
b
s
i
n
C
=
1
2
a
c
s
i
n
B
=
1
2
b
c
s
i
n
A
S = \frac 12absinC = \frac 12 acsinB= \frac 12 bcsinA
S=21absinC=21acsinB=21bcsinA
已知三顶点坐标的情况下——矢量运算
已知三顶点坐标
A
/
B
/
C
A/B/C
A/B/C,易得任意两矢量,以下以
a
b
⃗
/
a
c
⃗
\vec{ab}/\vec{ac}
ab/ac为例。由于矢量运算的叉乘存在以下性质
a
b
⃗
×
a
c
⃗
=
2
S
Δ
A
B
C
\begin{equation} \begin{split} \vec{ab}\times\vec{ac} = 2S_{\Delta ABC} \end{split} \end{equation}
ab×ac=2SΔABC
所以三角形的面积可表示为
S
Δ
A
B
C
=
a
b
⃗
×
a
c
⃗
2
\begin{equation} \begin{split} S_{\Delta ABC} = \dfrac{\vec{ab}\times\vec{ac}}{2} \end{split} \end{equation}
SΔABC=2ab×ac
已知三边长度的情况下——海伦公式
海伦公式
已知三边长度为
a
/
b
/
c
a/b/c
a/b/c,求一个三角形的半周长
p
p
p
p
=
a
+
b
+
c
2
\begin{equation} \begin{split} p = \dfrac{a+b+c}{2} \end{split} \end{equation}
p=2a+b+c
根据海伦公式计算三角形面积
S
Δ
A
B
C
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
\begin{equation} \begin{split} S_{\Delta ABC} = \sqrt{p(p-a)(p-b)(p-c)} \end{split} \end{equation}
SΔABC=p(p−a)(p−b)(p−c)
海伦公式的推导
设 B D = x BD = x BD=x, D C = a − x DC = a -x DC=a−x
由勾股定理可得
A
B
2
−
B
D
2
=
A
D
2
=
A
C
2
−
D
C
2
AB^2-BD^2 = AD^2 =AC^2-DC^2
AB2−BD2=AD2=AC2−DC2
写作
c
2
−
x
2
=
b
2
−
(
a
−
x
)
2
c
2
−
x
2
=
b
2
−
(
a
2
−
2
a
x
+
x
2
)
c
2
−
x
2
=
b
2
−
a
2
+
2
a
x
−
x
2
c
2
=
b
2
−
a
2
+
2
a
x
2
a
x
=
a
2
−
b
2
+
c
2
x
=
a
2
−
b
2
+
c
2
2
a
\begin{split} c^2-x^2 &= b^2-(a-x)^2 \\ c^2-x^2 &= b^2-(a^2 -2ax + x^2) \\ c^2-x^2 &= b^2-a^2 +2ax - x^2 \\ c^2 &= b^2-a^2 +2ax \\ 2ax &= a^2-b^2 +c^2 \\ x &= \frac{a^2-b^2 +c^2}{2a} \end{split}
c2−x2c2−x2c2−x2c22axx=b2−(a−x)2=b2−(a2−2ax+x2)=b2−a2+2ax−x2=b2−a2+2ax=a2−b2+c2=2aa2−b2+c2
因此有
A
D
2
=
c
2
−
x
2
=
c
2
−
(
a
2
−
b
2
+
c
2
2
a
)
2
=
c
2
−
(
a
2
−
b
2
+
c
2
)
2
4
a
2
=
1
4
a
2
[
(
2
a
c
)
2
−
(
a
2
−
b
2
+
c
2
)
2
]
=
1
4
a
2
[
2
a
c
+
(
a
2
−
b
2
+
c
2
)
]
[
2
a
c
−
(
a
2
−
b
2
+
c
2
)
]
=
1
4
a
2
[
(
a
+
c
)
2
−
b
2
]
[
b
2
−
(
a
−
c
)
2
]
=
1
4
a
2
(
a
+
c
+
b
)
(
a
+
c
−
b
)
(
b
+
a
−
c
)
(
b
−
a
+
c
)
A
D
=
1
2
a
(
a
+
c
+
b
)
(
a
+
c
−
b
)
(
b
+
a
−
c
)
(
b
−
a
+
c
)
\begin{split} AD^2 &= c^2-x^2 \\ &= c^2-\Big(\frac{a^2-b^2 +c^2}{2a}\Big)^2 \\ &= c^2-\frac{(a^2-b^2 +c^2)^2}{4a^2} \\ &= \frac 1{4a^2}[(2ac)^2 - (a^2-b^2 +c^2)^2] \\ &= \frac 1{4a^2}[2ac + (a^2-b^2 +c^2)][2ac - (a^2-b^2 +c^2)] \\ &= \frac 1{4a^2}[(a+c)^2-b^2][b^2-(a-c)^2] \\ &= \frac 1{4a^2}(a+c+b)(a+c-b)(b+a-c)(b-a+c) \\ AD&=\frac 1{2a}\sqrt{(a+c+b)(a+c-b)(b+a-c)(b-a+c)} \\ \end{split}
AD2AD=c2−x2=c2−(2aa2−b2+c2)2=c2−4a2(a2−b2+c2)2=4a21[(2ac)2−(a2−b2+c2)2]=4a21[2ac+(a2−b2+c2)][2ac−(a2−b2+c2)]=4a21[(a+c)2−b2][b2−(a−c)2]=4a21(a+c+b)(a+c−b)(b+a−c)(b−a+c)=2a1(a+c+b)(a+c−b)(b+a−c)(b−a+c)
三角形的面积
S
Δ
A
B
C
S_{\Delta ABC}
SΔABC可表示为
S
Δ
A
B
C
=
1
2
B
C
⋅
A
D
=
1
2
a
1
2
a
(
a
+
c
+
b
)
(
a
+
c
−
b
)
(
b
+
a
−
c
)
(
b
−
a
+
c
)
=
1
4
(
a
+
c
+
b
)
(
a
+
c
−
b
)
(
b
+
a
−
c
)
(
b
−
a
+
c
)
\begin{split} S_{\Delta ABC} &= \frac 12 BC·AD \\ &= \frac 12 a \frac 1{2a}\sqrt{(a+c+b)(a+c-b)(b+a-c)(b-a+c)} \\ &= \frac 14 \sqrt{(a+c+b)(a+c-b)(b+a-c)(b-a+c)} \\ \end{split}
SΔABC=21BC⋅AD=21a2a1(a+c+b)(a+c−b)(b+a−c)(b−a+c)=41(a+c+b)(a+c−b)(b+a−c)(b−a+c)
令
(
a
+
b
+
c
)
/
2
=
p
(a+b+c)/2 = p
(a+b+c)/2=p,称
p
p
p为三角形的半周长,有
a
+
b
+
c
=
2
p
b
+
c
−
a
=
a
+
b
+
c
−
2
a
=
2
(
p
−
a
)
c
+
a
−
b
=
a
+
b
+
c
−
2
b
=
2
(
p
−
b
)
a
+
b
−
c
=
a
+
b
+
c
−
2
c
=
2
(
p
−
c
)
\begin{split} a + b + c &= 2p \\ b+c-a &= a+b+c-2a \\ &= 2(p-a) \\ c+a-b &= a+b+c-2b \\ &= 2(p-b) \\ a+b-c &= a+b+c-2c \\ &= 2(p-c) \\ \end{split}
a+b+cb+c−ac+a−ba+b−c=2p=a+b+c−2a=2(p−a)=a+b+c−2b=2(p−b)=a+b+c−2c=2(p−c)
综上,海伦公式可表示为
S
Δ
A
B
C
=
1
4
2
p
⋅
2
(
p
−
a
)
⋅
2
(
p
−
b
)
⋅
2
(
p
−
c
)
=
p
⋅
(
p
−
a
)
⋅
(
p
−
b
)
⋅
(
p
−
c
)
\begin{split} S_{\Delta ABC} &= \frac 14 \sqrt{2p·2(p-a)·2(p-b)·2(p-c)} \\ &= \sqrt{p·(p-a)·(p-b)·(p-c)} \\ \end{split}
SΔABC=412p⋅2(p−a)⋅2(p−b)⋅2(p−c)=p⋅(p−a)⋅(p−b)⋅(p−c)