图形几何学——圆形:圆弧与曲率

基于三个离散点求外接圆半径和曲率

方法1

A、B、C分别是参考线的某三个连续的离散点,abc分别是其对边。根据三角形外接圆相关性质,通过作三条边的中垂线的交点可以求得三角形的外接圆心。连接CO并延长交圆周于点D,由于
在这里插入图片描述

方法2

在这里插入图片描述

近似认为 ∣ P 1 ⃗ ∣ = ∣ P 2 P 3 ⃗ ∣ = d s |\vec{P_1}| = |\vec{P_2P_3}| = ds P1 =P2P3 =ds相等,求向量 P 2 P 1 ⃗ \vec{P_2P_1} P2P1 和向量 P 2 P 3 ⃗ \vec{P_2P_3} P2P3 的向量和,记向量和的端点为 A A A。易知四边形 D P 1 P 2 P 3 DP_1P_2P_3 DP1P2P3为菱形, Δ O P 1 P 2 \Delta OP_1P_2 ΔOP1P2 Δ O P 2 P 3 \Delta OP_2P_3 ΔOP2P3为等腰三角形,所以 Δ O P 1 P 2 \Delta OP_1P_2 ΔOP1P2 Δ P 1 P 2 D \Delta P_1P_2D ΔP1P2D相似,另外两个三角形同理,所以他们有以下关系
l d s = d s R \frac{l}{ds} = \frac{ds}{R} dsl=Rds
根据这个关系式可得
κ = 1 R = l d s 2 \kappa = \frac 1R = \frac{l}{ds^2} κ=R1=ds2l
其中 l = ∣ P 2 P 1 ⃗ + P 2 P 3 ⃗ ∣ l = |\vec{P_2P_1} + \vec{P_2P_3}| l=P2P1 +P2P3

根据密切圆概念求轨迹的曲率

参考相关文献1

  • 曲率圆(密切圆)的定义
    如果我们要计算某一处的曲率,就在它的左右各取一个点,并用这三点确定一个圆。然后将左右两个点不断向中间靠拢,最终得到的圆,就是曲率圆。曲率圆就是对这个点附近曲线的最佳圆逼近。
  • 曲率圆的特点
    • 曲线较为平坦的地方,曲率圆半径较大,较为弯曲的地方,曲率圆半径较小
  • 根据曲率圆求曲率的过程
    假设一段曲线上取三个点,假设中间的点为 x 0 x_0 x0,左右两个点分别为 x 0 − δ x_0 - \delta x0δ x 0 + δ x_0 + \delta x0+δ,由它们确定的圆的半径用 R R R表示。

在这里插入图片描述

这个半径可以根据外接圆半径得到, S Δ A B C S_{\Delta ABC} SΔABC为这个三角形的面积,a,b,c为三个点构成三角形的三条边的边长,即三个向量的模,写作
R = a b c 4 S Δ A B C = ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ ⋅ ∣ ∣ c ∣ ∣ 4 S Δ A B C \begin{split} R &= \dfrac {abc}{4S_{\Delta ABC}} \\ &= \dfrac {||a||·||b||·||c||}{4S_{\Delta ABC}} \end{split} R=4SΔABCabc=4SΔABC∣∣a∣∣∣∣b∣∣∣∣c∣∣

在这里插入图片描述

根据图形几何可知,向量a与向量b的点乘/行列式即为他们两所构成的平行四边形的面积,写作
S 平行四边形 = 2 S Δ A B C = a ⋅ b = det ⁡ ( a , b ) S_{平行四边形} = 2S_{\Delta ABC} = a · b = \det(a,b) S平行四边形=2SΔABC=ab=det(a,b)
即有
S Δ A B C = 1 2 ∣ det ⁡ ( a , b ) ∣ S_{\Delta ABC} = \frac 12 |\det(a,b) | SΔABC=21det(a,b)
将上式带回原式后可得
R = ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ ⋅ ∣ ∣ c ∣ ∣ 2 ∣ det ⁡ ( a , b ) ∣ \begin{split} R &= \dfrac {||a||·||b||·||c||}{2|\det(a,b) |} \end{split} R=2∣det(a,b)∣∣a∣∣∣∣b∣∣∣∣c∣∣
设曲线函数为 f f f,那么三个点的坐标为
( x 0 − δ , f ( x 0 − δ ) ) ( x 0 , f ( x 0 ) ) ( x 0 + δ , f ( x 0 + δ ) ) \Big(x_0 - \delta, f(x_0 - \delta)\Big)\\ \Big(x_0, f(x_0)\Big) \\ \Big(x_0 + \delta, f(x_0 + \delta)\Big) (x0δ,f(x0δ))(x0,f(x0))(x0+δ,f(x0+δ))
那么三个向量分别写作
a = ( δ , f ( x 0 + δ ) − f ( x 0 ) ) b = ( δ , f ( x 0 − f ( x 0 − δ ) ) ) c = ( − 2 δ , f ( x 0 + δ ) − f ( x 0 − δ ) ) a = \Big(\delta, f(x_0 + \delta) - f(x_0)\Big)\\ b = \Big(\delta, f(x_0 - f(x_0 - \delta))\Big)\\ c = \Big(-2\delta, f(x_0 + \delta) -f(x_0 - \delta) \Big) a=(δ,f(x0+δ)f(x0))b=(δ,f(x0f(x0δ)))c=(2δ,f(x0+δ)f(x0δ))
将上式代入,可得
R = [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 4 [ f ( x 0 + δ ) − f ( x 0 ) δ ] 2 + 1 [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 1 2 ∣ f ( x 0 + δ ) + f ( x 0 − δ ) − 2 f ( x 0 ) δ 2 ∣ R = \dfrac {\sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 4} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0)}{\delta}\Big]^2+ 1} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 1} }{2\Big|\dfrac {f(x_0 + \delta) + f(x_0 - \delta) - 2f(x_0)}{\delta^2}\Big|} R=2 δ2f(x0+δ)+f(x0δ)2f(x0) [δf(x0+δ)f(x0δ)]2+4 [δf(x0+δ)f(x0)]2+1 [δf(x0+δ)f(x0δ)]2+1

让左右两边的点向中间靠,当 δ → 0 \delta \rightarrow 0 δ0时,即可得到曲率圆的半径,写作
lim ⁡ δ → 0 R = [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 4 [ f ( x 0 + δ ) − f ( x 0 ) δ ] 2 + 1 [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 1 2 ∣ f ( x 0 + δ ) + f ( x 0 − δ ) − 2 f ( x 0 ) δ 2 ∣ = [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 4 [ f ( x 0 + δ ) − f ( x 0 ) δ ] 2 + 1 [ f ( x 0 + δ ) − f ( x 0 − δ ) δ ] 2 + 1 2 ∣ f ( x 0 + δ ) + f ( x 0 − δ ) − 2 f ( x 0 ) δ 2 ∣ \begin{split} \lim_{\delta \rightarrow0}R &= \dfrac {\sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 4} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0)}{\delta}\Big]^2+ 1} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 1} }{2\Big|\dfrac {f(x_0 + \delta) + f(x_0 - \delta) - 2f(x_0)}{\delta^2}\Big|} \\ &= \dfrac {\sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 4} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0)}{\delta}\Big]^2+ 1} \sqrt{\Big[\dfrac{f(x_0 + \delta) - f(x_0 - \delta)}{\delta}\Big]^2+ 1} }{2\Big|\dfrac {f(x_0 + \delta) + f(x_0 - \delta) - 2f(x_0)}{\delta^2}\Big|} \end{split} δ0limR=2 δ2f(x0+δ)+f(x0δ)2f(x0) [δf(x0+δ)f(x0δ)]2+4 [δf(x0+δ)f(x0)]2+1 [δf(x0+δ)f(x0δ)]2+1 =2 δ2f(x0+δ)+f(x0δ)2f(x0) [δf(x0+δ)f(x0δ)]2+4 [δf(x0+δ)f(x0)]2+1 [δf(x0+δ)f(x0δ)]2+1
综上,求路径半径及其曲率的公式为
R = lim ⁡ δ → 0 R = { 1 + [ f ′ ( x 0 ) ] 2 } 3 2 ∣ f ′ ′ ( x 0 ) ∣ R = \lim_{\delta \rightarrow0}R =\displaystyle \frac{\big\{1+\big[f'(x_0)\big]^2\big\}^{\frac 32}}{|f''(x_0)|} R=δ0limR=f′′(x0){1+[f(x0)]2}23
κ = 1 R = ∣ f ′ ′ ( x 0 ) ∣ { 1 + [ f ′ ( x 0 ) ] 2 } 3 2 \kappa = \frac 1R =\displaystyle \frac{|f''(x_0)|}{\big\{1+\big[f'(x_0)\big]^2\big\}^{\frac 32}} κ=R1={1+[f(x0)]2}23f′′(x0)


  1. 刘金堂的知乎专栏:https://zhuanlan.zhihu.com/p/590653546 ↩︎

  • 24
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值