✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
随着信息安全需求的快速增长,生物识别技术在用户认证系统中的应用越来越广泛。作为一种新兴的生物识别技术,手指静脉识别因其具有非接触采集、活体检测、高稳定性和高度防伪的特点,在身份识别领域受到广泛关注。然而,手指静脉识别面临一些技术挑战,特别是在图像采集过程中,光照变化或手指放置位置不同,可能导致图像模糊或变形,影响局部细节信息的提取。此外,当前的指静脉识别系统在处理复杂的图像时,往往会出现特征提取不足、网络复杂度高以及过拟合等问题。为了解决这些问题,本文提出了一种基于全局和局部特征融合的手指静脉识别算法,结合了全局和局部特征提取的优势,提升了识别的准确性和鲁棒性。
1. 融合Transformer和CNN的双通道指静脉识别算法
为了更好地提取手指静脉图像中的全局与局部特征,本文首先提出了一种双通道的指静脉识别算法(FV-CVT),结合了卷积神经网络(CNN)和改进的视觉Transformer模型(Vision Transformer, ViT)。该方法通过分离式的通道设计分别处理局部特征与全局特征,确保图像的不同层次信息都能够被充分利用。
在局部特征提取方面,本文设计了轻量化的CNN网络,使用组卷积技术对图像进行处理。组卷积通过减少卷积核的计算量,使得网络的复杂度降低,能够在保证特征提取能力的前提下减少计算开销。同时,CNN擅长捕捉图像的局部细节,能够有效提取手指静脉图像中的纹理信息,尤其是处理那些存在细微差异的图像时表现出色。
在全局特征提取方面,本文采用了改进的视觉Transformer模型。Transformer模型因其自注意力机制,擅长捕捉图像中的全局信息,能够学习图像的长期依赖关系。通过对全局特征的学习,Transformer可以有效地补充局部卷积网络在提取大范围图像特征时的不足,尤其是在静脉图像中存在光照或位置变化时,Transformer模型能够保持较高的鲁棒性。
最后,FV-CVT算法将两个通道提取的全局和局部特征进行融合,以最大限度地保留有用的图像信息。融合后的特征通过自适应平均池化和全连接层,最终完成分类操作。该算法在多个公开数据集上的测试结果表明,FV-CVT在识别准确率、参数量以及计算复杂度等多个方面具有较好的表现,特别是在处理大规模数据集时,展现了出色的性能。
2. 针对全局特征提取的优化——融合多头自注意力机制的轻量级算法
虽然FV-CVT算法在特征提取方面具有良好的效果,但在全局特征提取分支中,存在一些性能不足的情况。为了进一步优化这一部分,本文提出了一种改进的轻量级指静脉识别算法,名为LFVRN-MHSA(Lightweight Finger Vein Recognition Network with Multi-Head Self-Attention),该算法融合了多头自注意力机制,提升了全局特征提取的能力。
首先,LFVRN-MHSA算法使用了一种包含深度可分离卷积的倒残差结构(Inverted Residual Structure),该结构能够在提升网络深度的同时保持较低的计算复杂度,增强了局部特征提取的效率。深度可分离卷积将标准卷积分解为深度卷积和逐点卷积,显著减少了参数量,同时提升了卷积运算的效率。这种轻量化的设计使得网络在处理大规模图像时表现更加高效。
其次,在全局特征提取的最后一层,本文使用多头自注意力机制(Multi-Head Self-Attention, MHSA)替代了传统的深度卷积层。多头自注意力机制通过并行处理多个注意力头,能够更好地捕捉图像中不同区域之间的依赖关系,有效提升全局信息的聚合能力。这一改进使得算法在处理复杂背景或光照变化时,能够保持较高的识别精度。
实验结果表明,LFVRN-MHSA算法在多个公开数据集和自建数据集上,平均识别准确率达到了99.64%,参数量和计算复杂度也显著减少。与当前一些新颖的轻量级算法相比,LFVRN-MHSA不仅在识别准确率上表现优异,同时在多个数据集上展现了更均衡的性能,进一步验证了其鲁棒性和可扩展性。
3. 全局和局部特征融合的优势及实验验证
在手指静脉识别过程中,全局特征与局部特征的有效融合是提升识别准确率的关键。局部特征可以帮助网络捕捉静脉图像中的细节信息,例如静脉的纹理、形态等;而全局特征则能够从整体上掌握图像的布局,确保在光照和位置变化的情况下依然能够正确识别。这两者的结合不仅提高了系统的抗干扰能力,还提升了对图像的细微变化的捕捉能力。
为了验证全局和局部特征融合的有效性,本文在多个数据集上进行了对比实验。实验结果显示,融合特征的算法在识别性能上有明显的提升,特别是在一些具有复杂背景或不规则光照的静脉图像中,表现出更高的鲁棒性。与仅使用局部特征或全局特征的算法相比,融合后的算法能够更加准确地捕捉静脉的细微特征,有效降低误识别率。
此外,通过对比分析,我们发现全局和局部特征的融合还带来了网络模型复杂度的显著下降。在LFVRN-MHSA算法中,深度可分离卷积和多头自注意力机制的结合进一步简化了网络结构,使得网络在处理高维度图像时的计算开销大大减少。这一轻量化设计使得算法不仅适用于静脉识别,还可以应用于其他计算资源有限的场景中。
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义轻量化卷积块
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(DepthwiseSeparableConv, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return F.relu(x)
# 定义多头自注意力模块
class MultiHeadSelfAttention(nn.Module):
def __init__(self, in_dim, heads):
super(MultiHeadSelfAttention, self).__init__()
self.heads = heads
self.scale = in_dim ** -0.5
self.query = nn.Linear(in_dim, in_dim)
self.key = nn.Linear(in_dim, in_dim)
self.value = nn.Linear(in_dim, in_dim)
self.fc_out = nn.Linear(in_dim, in_dim)
def forward(self, x):
B, N, C = x.shape
q = self.query(x).view(B, N, self.heads, C // self.heads).transpose(1, 2)
k = self.key(x).view(B, N, self.heads, C // self.heads).transpose(1, 2)
v = self.value(x).view(B, N, self.heads, C // self.heads).transpose(1, 2)
attn = torch.einsum("bnqd,bnkd->bnqk", [q, k]) * self.scale
attn = torch.softmax(attn, dim=-1)
out = torch.einsum("bnqk,bnvd->bnqd", [attn, v]).transpose(1, 2).contiguous()
out = out.view(B, N, C)
out = self.fc_out(out)
return out
# 定义主干网络
class FingerVeinNet(nn.Module):
def __init__(self, num_classes=10):
super(FingerVeinNet, self).__init__()
self.conv1 = DepthwiseSeparableConv(1, 32)
self.conv2 = DepthwiseSeparableConv(32, 64)
self.conv3 = DepthwiseSeparableConv(64, 128)
self.attention = MultiHeadSelfAttention(128, 8)
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv