✅博主简介:本人擅长建模仿真、论文写作与指导,项目与课题交流。项目合作可私信或扫描文章底部二维码。
(1) 高铁悬式绝缘子图像数据增强与预处理
在高速铁路接触网系统中,悬式绝缘子的运行状态对于整个牵引供电系统的稳定性至关重要。然而,由于高铁沿线环境复杂,特别是中、重污区或农田、施工区段,悬式绝缘子常常受到外界因素的干扰,出现伞裙破损或异物附着等故障问题。这些问题如果不能及时发现,可能引发严重的供电事故。然而,传统的检测手段主要依赖人工巡检或通过6C系统(供电安全检测监测系统)进行设备图像的人工分析,这些方法效率低下且不具备实时性。因此,本文提出了基于优化深度学习算法的悬式绝缘子故障检测方法。
针对高铁悬式绝缘子的检测,本文首先面临的一个问题是图像数据质量较低,特别是通过接触网监测系统采集的4C图像,通常亮度较低,难以直接应用于深度学习模型。为了解决这一问题,本文采用了Enlighten GAN图像增强算法对原始4C图像进行了处理,并将其与其他传统增强算法如CLAHE和LIME进行了对比。结果表明,Enlighten GAN算法在提升图像亮度和细节保留方面具有显著优势,确保了图像数据的质量,为后续的检测算法提供了高质量的输入数据。
通过对图像增强后处理的4C图像进行分析,本文建立了涵盖正常绝缘子与故障绝缘子的高铁悬式绝缘子数据集。此数据集经过了详细标注,包含了各种故障类型,如伞裙破损、异物附着等,能够为后续的检测算法提供有效的训练样本。
(2) 基于深度学习的正常悬式绝缘子检测
在正常悬式绝缘子的检测方面,传统的图像处理方法存在不足,例如目标定位精度较低、难以应对复杂环境中的多样化目标。基于此,本文提出了一种基于深度学习的目标检测算法,能够有效提升对正常悬式绝缘子的检测精度。通过分析国内外的相关文献,本文分别对Faster R-CNN、YOLOv5s和SSD三种目标检测算法进行了研究,并使用增强后的4C图像数据集对这些算法进行训练和测试。
在对比实验结果的基础上,本文选择了SSD算法作为对正常悬式绝缘子检测的主要算法。尽管Faster R-CNN在一些情况下表现出较高的检测精度,但其计算量较大,不适用于实时检测。YOLOv5s在速度方面具备一定优势,但在低亮度图像条件下,目标定位精度有所下降。相较之下,SSD算法在正样本检测的精度方面表现最佳,同时具备较高的运行速度,适合用于实际场景中的快速检测。
为了进一步提升SSD算法在低亮度数据集上的性能,本文对其进行了改进。通过将SSD中的VGG-16网络结构替换为MobileNet V2,本文设计了一个具有更好特征提取能力的网络结构。MobileNet V2采用了反向残差结构,能够在减少计算资源需求的同时,提升对特征信息的提取能力,尤其是在低亮度条件下,改善了特征信息丢失的问题。这一改进策略有效解决了传统SSD算法在低亮度环境下的不足,显著提升了对正常悬式绝缘子的定位精度。
(3) 基于改进YOLOv5s的故障悬式绝缘子检测
故障悬式绝缘子的检测比正常绝缘子更为复杂,尤其是在复杂背景和小目标物体的检测中,传统算法表现出明显的局限性。为了解决这些问题,本文在YOLOv5s网络的基础上进行了优化。首先,针对样本数量不平衡的问题(负样本远少于正样本),本文采用了Mosaic数据增强技术,对负样本进行了扩充,增强了训练数据的多样性,从而提升了负样本的检测效果。
在应对复杂背景的情况下,传统的YOLOv5s算法往往难以准确区分故障绝缘子与周围环境。为此,本文引入了SE(Squeeze-and-Excitation)注意力机制,对YOLOv5s算法进行了改进。在YOLOv5s的bottleneck模块中加入SE Block,通过对通道之间的相互依赖性建模,自适应地校准通道特征响应,从而赋予绝缘子更高的特征权重。在复杂背景下,SE Block能够有效提升故障绝缘子的检测精度,减少了背景干扰对检测结果的影响。
此外,针对小目标物体检测的难题,本文还提出了使用SIoU(Smooth Intersection over Union)损失函数替代YOLOv5s中的原有损失函数。这一改进策略通过重新定义损失函数,使其更好地适应小目标物体的检测。SIoU损失函数不仅考虑了真实框与预测框匹配的方向问题,还能更好地调整预测框的尺寸大小,从而提高了小目标物体的检测精度。实验结果表明,使用SIoU损失函数的改进YOLOv5s算法在小目标检测上的表现有了显著提升。
为了兼顾小目标检测与复杂背景下的精度需求,本文将SE注意力机制与SIoU损失函数相结合,提出了联合改进的YOLOv5s算法。在实验中,本文对小目标数据集和复杂背景数据集进行了多轮对比测试,结果显示,联合改进后的YOLOv5s算法在检测精度和运算速度方面均优于传统算法,适用于复杂背景下的高铁悬式绝缘子故障检测。
% 基于YOLOv5s改进算法的故障检测
% 加载预训练的YOLOv5s模型
model = load('yolov5s.mat');
% 读取测试图像
image = imread('insulator_image.jpg');
% 预处理图像
inputSize = [640, 640];
processedImage = imresize(image, inputSize);
% 执行目标检测
[bboxes, scores, labels] = detect(model, processedImage, 'Threshold', 0.5);
% 绘制检测结果
figure;
imshow(processedImage);
hold on;
for i = 1:size(bboxes, 1)
rectangle('Position', bboxes(i,:), 'EdgeColor', 'r', 'LineWidth', 2);
label = sprintf('%s: %.2f', labels{i}, scores(i));
text(bboxes(i,1), bboxes(i,2) - 10, label, 'Color', 'red', 'FontSize', 12);
end
hold off;
title('Faulty Insulator Detection');
% 保存检测结果
saveas(gcf, 'detection_result.jpg');