✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
(1)动车组转向架构架结构可靠性优化设计,旨在解决转向架构架可靠度不足的问题。转向架构架作为动车组的重要组成部分之一,承担着承受和传递各个方向作用力的重要作用,其结构参数直接决定了列车的可靠性。为了提高转向架构架的可靠性,本研究提出了一种改进的鲸鱼优化算法,对转向架构架进行单、多目标可靠性优化设计。首先,采用响应面法和蒙特卡罗法相结合的方法计算转向架构架的可靠度。具体而言,建立了转向架构架的有限元模型,并根据国外UIC 615-4和EN 13749标准以及国内TB/T 3548和TB/T 3549.1标准对构架施加载荷,组合了18种工况进行静强度分析并校核。通过选择最大应力出现的第9工况进行灵敏度分析,筛选出关键的设计变量。利用响应面法拟合最大等效应力函数,结合蒙特卡罗法进行结构可靠度计算。这种方法不仅能够准确地评估转向架构架的可靠度,还能为后续的优化设计提供可靠的数据支持。
(2)为了提高优化算法的性能,本研究提出了一种改进的鲸鱼优化算法。传统鲸鱼优化算法在初始种群较为单一、容易陷入局部最优解以及收敛速度缓慢等方面存在不足。为了解决这些问题,本研究引入了最优拉丁超立方设计初始化种群,提升了初始种群的均匀性,从而增强了算法的全局搜索能力。同时,提出了非线性收敛因子和非线性自适应权重,进一步增强了算法的全局搜索能力和收敛速度。具体而言,非线性收敛因子能够在优化过程中动态调整搜索步长,避免过早收敛;非线性自适应权重则根据当前搜索状态动态调整搜索方向,提高搜索效率。通过这些改进,优化算法在处理复杂优化问题时表现出更强的鲁棒性和更高的效率。
基于改进的鲸鱼优化算法,本研究建立了转向架构架的单目标可靠性优化模型。该模型以最大化结构可靠度为目标,通过改进的鲸鱼优化算法进行寻优。具体步骤包括初始化种群、计算适应度、选择操作、交叉操作和变异操作。通过多次迭代,逐步优化转向架构架的结构参数,最终得到一个在可靠度方面最优的构架设计方案。为了验证优化结果的有效性,本研究进行了仿真分析,结果表明,优化后的构架在可靠度方面显著提高,最大等效应力明显降低,结构安全性得到了有效保障。
(3)为了进一步提高转向架构架的综合性能,本研究还建立了转向架构架的多目标可靠性优化模型。考虑动车组在实际运行中面临的复杂环境和多样性的需求,引入了Pareto占优思想,将单目标鲸鱼优化算法转化为多目标鲸鱼优化算法。具体而言,多目标优化模型考虑了结构可靠度、振动可靠度和刚度可靠性三个目标,通过改进的多目标鲸鱼优化算法进行寻优。具体步骤包括初始化种群、计算多目标适应度、选择操作、交叉操作和变异操作。通过多次迭代,逐步优化转向架构架的结构参数,最终得到一组在多个目标上均表现优秀的构架设计方案。为了验证优化结果的有效性,本研究进行了仿真分析,结果表明,优化后的构架在结构可靠度、振动可靠度和刚度可靠性方面均显著提高,综合性能得到了有效提升。
% 改进的鲸鱼优化算法实现
function [best_solution, best_fitness] = improved_whale_optimization_algorithm(objective_function, bounds, population_size, max_iterations, a, l)
% objective_function: 目标函数
% bounds: 设计变量的上下界
% population_size: 种群大小
% max_iterations: 最大迭代次数
% a: 非线性收敛因子
% l: 非线性自适应权重
% 初始化种群
dim = size(bounds, 1);
population = initialize_population(bounds, population_size);
fitness_values = calculate_fitness(population, objective_function);
% 找到初始最优解
[~, best_idx] = min(fitness_values);
best_solution = population(best_idx, :);
best_fitness = fitness_values(best_idx);
% 迭代优化
for t = 1:max_iterations
% 更新收敛因子和自适应权重
a_t = a * (1 - t / max_iterations);
l_t = l * (1 - t / max_iterations);
% 更新种群
for i = 1:population_size
A = 2 * a_t * rand(1, dim) - a_t;
C = 2 * rand(1, dim);
p = rand();
if p < 0.5
if abs(A) < 1
D_best = abs(C .* best_solution - population(i, :));
population(i, :) = best_solution - A .* D_best;
else
random_whale = population(randi(population_size, 1), :);
D_random = abs(C .* random_whale - population(i, :));
population(i, :) = random_whale - A .* D_random;
end
else
D_best = abs(best_solution - population(i, :));
population(i, :) = best_solution + l_t .* (D_best .* (rand(1, dim) - 0.5));
end
% 边界检查
population(i, :) = max(min(population(i, :), bounds(:, 2)), bounds(:, 1));
end
% 重新计算适应度
fitness_values = calculate_fitness(population, objective_function);
% 更新最优解
[~, best_idx] = min(fitness_values);
if fitness_values(best_idx) < best_fitness
best_solution = population(best_idx, :);
best_fitness = fitness_values(best_idx);
end
end
end
% 初始化种群
function [population] = initialize_population(bounds, population_size)
dim = size(bounds, 1);
population = zeros(population_size, dim);
for i = 1:dim
population(:, i) = bounds(i, 1) + (bounds(i, 2) - bounds(i, 1)) * rand(population_size, 1);
end
end
% 计算适应度
function [fitness_values] = calculate_fitness(population, objective_function)
num_individuals = size(population, 1);
fitness_values = zeros(num_individuals, 1);
for i = 1:num_individuals
fitness_values(i) = objective_function(population(i, :));
end
end
% 目标函数示例
function [fitness] = objective_function(x)
% 示例目标函数,实际应用中应替换为具体的可靠性评估函数
fitness = sum(x.^2); % 例如,最小化平方和
end
% 示例调用
bounds = [0 10; 0 10; 0 10]; % 设计变量的上下界
population_size = 50;
max_iterations = 100;
a = 2;
l = 1;
% 进行优化
[best_solution, best_fitness] = improved_whale_optimization_algorithm(@objective_function, bounds, population_size, max_iterations, a, l);
% 显示最优解和适应度
disp('Best Solution:');
disp(best_solution);
disp('Best Fitness:');
disp(best_fitness);