✅ 博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
一、问题背景与数学模型建立
(1)钢铁行业在国民经济中占据重要地位,而炼钢 - 连铸作为钢铁生产的核心工序,其生产调度的科学性直接影响企业生产效率。我国钢铁行业发展迅速,但在生产调度方面仍有提升空间。通过对国内外相关文献的查阅,分析当前研究现状,发现现有研究存在一些不足。结合实际情况,将有限缓冲区和设备预防性维护纳入考虑范围,因为在实际生产中,缓冲区容量有限,不能无限存储中间产品,而设备预防性维护能确保设备稳定运行,减少故障对生产的影响。以最小化最大完成时间和最小化炉次等待时间为目标建立数学模型,最大完成时间的缩短可提高生产效率,减少生产周期;炉次等待时间的减少则能降低生产成本,提高设备利用率。
(2)在实际的炼钢 - 连铸过程中,存在多种约束条件。例如,不同设备的处理能力不同,炉次之间的转换需要一定时间,以及有限缓冲区的容量限制等。这些约束条件使得生产调度问题变得复杂。为了解决这个问题,需要建立一个能够准确描述实际生产情况的数学模型。通过对生产过程的分析,确定决策变量、目标函数和约束条件,建立起以最小化最大完成时间和最小化炉次等待时间为目标的数学模型。
二、算法设计与改进
(1)针对考虑有限缓冲区和预防性维护的炼钢 - 连铸调度问题,设计了相应的编码和解码方法。编码方法要能够将实际的生产调度问题转化为算法可以处理的形式,解码方法则要能够将算法的解转化为实际的生产调度方案。编码和解码方法的设计直接影响算法的性能和求解效果。
(2)提出基于鲸鱼群算法和非支配排序遗传算法改进的混合算法。首先,根据编码特点,使用启发式方法生成初始解群。在生成初始解的过程中,将浇次顺序作为主要操作对象。这样可以使初始种群更加均匀地分布在解域中,提高算法前期的寻优速度。例如,可以根据设备的处理能力和缓冲区容量,合理安排浇次顺序,使得初始解更加接近最优解。
(3)在个体更新的过程中,沿用螺旋式搜索以及鲸鱼群算法中个体移动的思想,并结合离散优化问题特征做出改进。螺旋式搜索可以在解空间中进行更广泛的搜索,而鲸鱼群算法中的个体移动思想可以使算法更快地收敛到最优解。结合离散优化问题的特征,对个体更新方法进行改进,例如采用整数编码和特定的变异操作,提高算法的搜索性能。
(4)利用外部集合保存优秀个体,减少优秀个体丢失的情况。在算法的运行过程中,可能会出现一些优秀的个体被淘汰的情况。为了避免这种情况,可以使用外部集合来保存优秀个体。同时,结合有效的快速非支配排序方法,提高算法的计算效率。快速非支配排序方法可以快速确定个体的支配关系,从而减少算法的计算时间。
三、实验设计与结果分析
(1)结合实际生产数据,设计了五个不同规模的仿真实验案例。这些案例涵盖了不同的生产规模、设备数量和缓冲区容量等情况,能够全面地验证问题模型和所提混合算法的有效性。例如,可以设计一个小型案例,用于测试算法的基本性能;设计一个中型案例,用于验证算法在中等规模问题上的求解能力;设计一个大型案例,用于考察算法在大规模问题上的可扩展性。
(2)在实验过程中,采用改进的人工蜂群算法、非支配排序遗传算法和鲸鱼群算法作为主要对比算法。在不同案例中对目标值进行统计,包括最大完成时间和炉次等待时间。通过对比不同算法在相同案例下的目标值,可以直观地看出所提混合算法的优势和不足。
(3)使用多种评价指标对算法性能进一步分析,从收敛性、广泛性以及运行效率几个角度进行对比。收敛性是指算法是否能够快速地收敛到最优解;广泛性是指算法是否能够在不同的问题规模和约束条件下都能找到较好的解;运行效率是指算法的运行时间。通过对这些评价指标的分析,可以全面地评估所提混合算法的性能。
(4)实验结果表明,文中所提的混合算法在求解考虑有限缓冲区和预防性维护的炼钢 - 连铸调度问题上具有更好的求解性能。在最大完成时间和炉次等待时间方面,混合算法都能够取得更小的值,说明其能够更好地优化生产调度方案。同时,在收敛性、广泛性和运行效率方面,混合算法也表现出了明显的优势。这为实际生产中的炼钢 - 连铸调度问题提供了一种有效的解决方案。
% 炼钢-连铸调度问题混合算法代码
% 定义问题参数
numJobs = 15; % 作业数量
numMachines = 4; % 机器数量
bufferSize = 8; % 缓冲区大小
maintenanceInterval = 12; % 预防性维护间隔
% 初始化作业处理时间矩阵
processingTimes = randi([8, 25], numJobs, numMachines);
% 定义个体编码和解码函数
function schedule = encode(jobs)
schedule = zeros(numJobs, numMachines);
for i = 1:numJobs
for j = 1:numMachines
schedule(i, j) = processingTimes(jobs(i), j);
end
end
end
function jobs = decode(schedule)
jobs = zeros(1, numJobs);
for i = 1:numJobs
[~, machineIndex] = min(schedule(i, :));
jobs(i) = machineIndex;
end
end
% 启发式方法生成初始解群
function initialPopulation = generateInitialPopulation()
initialPopulation = cell(15, 1);
for i = 1:15
jobs = randperm(numJobs);
initialPopulation{i} = encode(jobs);
end
end
% 计算适应度函数
function fitness = calculateFitness(schedule)
completionTimes = zeros(1, numJobs);
for i = 1:numJobs
for j = 1:numMachines
if i == 1 && j == 1
completionTimes(i) = schedule(i, j);
else
if j == 1
completionTimes(i) = completionTimes(i - 1) + schedule(i, j);
else
completionTimes(i) = max(completionTimes(i), completionTimes(i - 1)) + schedule(i, j);
end
end
end
end
maxCompletionTime = max(completionTimes);
waitingTimes = zeros(1, numJobs);
for i = 2:numJobs
waitingTimes(i) = completionTimes(i - 1) - completionTimes(i);
end
totalWaitingTime = sum(waitingTimes);
fitness = [maxCompletionTime, totalWaitingTime];
end
% 混合算法主体
function [bestSchedule, bestFitness] = hybridAlgorithm()
population = generateInitialPopulation();
externalPopulation = {};
for iteration = 1:150
% 非支配排序
fronts = nonDominatedSorting(population);
% 计算拥挤度距离
for i = 1:length(fronts)
fronts{i} = calculateCrowdingDistance(fronts{i});
end
% 选择父代个体
parents = selectParents(population, fronts);
% 交叉操作
offspring = crossover(parents);
% 变异操作
mutatedOffspring = mutate(offspring);
% 评价子代个体
for i = 1:length(mutatedOffspring)
fitness = calculateFitness(mutatedOffspring{i});
mutatedOffspring{i} = {mutatedOffspring{i}, fitness};
end
% 更新外部集合
externalPopulation = updateExternalPopulation(externalPopulation, mutatedOffspring);
% 合并种群
combinedPopulation = [population, mutatedOffspring];
% 非支配排序
fronts = nonDominatedSorting(combinedPopulation);
% 计算拥挤度距离
for i = 1:length(fronts)
fronts{i} = calculateCrowdingDistance(fronts{i});
end
% 选择新的种群
population = selectNewPopulation(combinedPopulation, fronts);
end
% 从外部集合中选择最优解
bestSchedule = externalPopulation{1}{1};
bestFitness = externalPopulation{1}{2};
end
% 非支配排序函数
function fronts = nonDominatedSorting(population)
fronts = {};
n = length(population);
S = cell(1, n);
n_p = zeros(1, n);
for i = 1:n
p = population{i}{2};
S{i} = {};
n_p(i) = 0;
for j = 1:n
q = population{j}{2};
if dominates(p, q)
S{i}{end + 1} = j;
elseif dominates(q, p)
n_p(i) = n_p(i) + 1;
end
end
if n_p(i) == 0
fronts{end + 1} = i;
end
end
i = 1;
while ~isempty(fronts{i})
Q = {};
for p = fronts{i}
for q = S{p}
n_p(q) = n_p(q) - 1;
if n_p(q) == 0
Q{end + 1} = q;
end
end
end
i = i + 1;
fronts{i} = Q;
end
end
% 判断个体 p 是否支配个体 q
function result = dominates(p, q)
if all(p(1) <= q(1)) && all(p(2) <= q(2)) && (any(p(1) < q(1)) || any(p(2) < q(2)))
result = true;
else
result = false;
end
end
% 计算拥挤度距离函数
function populationWithDistance = calculateCrowdingDistance(population)
n = length(population);
distance = zeros(1, n);
for i = 1:2
[~, index] = sort([population{j}{2}(i) for j = 1:n]);
populationWithDistance{index(1)}.distance = Inf;
populationWithDistance{index(end)}.distance = Inf;
f_max = population{index(end)}{2}(i);
f_min = population{index(1)}{2}(i);
for j = 2:n - 1
populationWithDistance{index(j)}.distance = populationWithDistance{index(j)}.distance +...
(population{index(j + 1)}{2}(i) - population{index(j - 1)}{2}(i)) / (f_max - f_min);
end
end
end
% 选择父代个体函数
function parents = selectParents(population, fronts)
parents = {};
n = length(population);
while length(parents) < n/2
for i = 1:length(fronts)
if length(parents) + length(fronts{i}) <= n/2
parents = [parents, population(fronts{i})];
else
remaining = n/2 - length(parents);
sortedFront = sortFront(fronts{i}, population);
parents = [parents, population(sortedFront(1:remaining))];
break;
end
end
end
end
% 对前沿中的个体进行排序
function sortedFront = sortFront(front, population)
n = length(front);
distance = zeros(1, n);
for i = 1:n
distance(i) = population{front(i)}.distance;
end
[~, index] = sort(distance, 'descend');
sortedFront = front(index);
end
% 交叉操作函数
function offspring = crossover(parents)
offspring = {};
n = length(parents);
for i = 1:2:n
parent1 = parents{i}{1};
parent2 = parents{i + 1}{1};
child1 = zeros(size(parent1));
child2 = zeros(size(parent2));
cutPoint1 = randi([1, numJobs - 1]);
cutPoint2 = randi([cutPoint1 + 1, numJobs]);
child1(1:cutPoint1) = parent1(1:cutPoint1);
child2(1:cutPoint1) = parent2(1:cutPoint1);
remainingJobs1 = setdiff(parent2(:), child1(:));
remainingJobs2 = setdiff(parent1(:), child2(:));
j = cutPoint1 + 1;
for k = 1:length(remainingJobs1)
child1(j) = remainingJobs1(k);
j = j + 1;
if j > numJobs
j = 1;
end
end
j = cutPoint1 + 1;
for k = 1:length(remainingJobs2)
child2(j) = remainingJobs2(k);
j = j + 1;
if j > numJobs
j = 1;
end
end
offspring{end + 1} = child1;
offspring{end + 1} = child2;
end
end
% 变异操作函数
function mutatedOffspring = mutate(offspring)
mutatedOffspring = {};
for i = 1:length(offspring)
child = offspring{i};
mutationProbability = 0.15;
if rand < mutationProbability
mutationPoint1 = randi([1, numJobs]);
mutationPoint2 = randi([1, numJobs]);
temp = child(mutationPoint1);
child(mutationPoint1) = child(mutationPoint2);
child(mutationPoint2) = temp;
end
mutatedOffspring{end + 1} = child;
end
end
% 更新外部集合函数
function externalPopulation = updateExternalPopulation(externalPopulation, offspring)
for i = 1:length(offspring)
child = offspring{i};
fitness = offspring{i}{2};
dominated = false;
for j = 1:length(externalPopulation)
if dominates(externalPopulation{j}{2}, fitness)
dominated = true;
break;
end
end
if ~dominated
newExternalPopulation = {};
for j = 1:length(externalPopulation)
if ~dominates(fitness, externalPopulation{j}{2})
newExternalPopulation{end + 1} = externalPopulation{j};
end
end
newExternalPopulation{end + 1} = {child, fitness};
externalPopulation = newExternalPopulation;
end
end
return;
end
% 选择新的种群函数
function newPopulation = selectNewPopulation(combinedPopulation, fronts)
newPopulation = {};
i = 1;
while length(newPopulation) + length(fronts{i}) <= length(combinedPopulation)
newPopulation = [newPopulation, combinedPopulation(fronts{i})];
i = i + 1;
end
remaining = length(combinedPopulation) - length(newPopulation);
sortedFront = sortFront(fronts{i}, combinedPopulation);
newPopulation = [newPopulation, combinedPopulation(sortedFront(1:remaining))];
return;
end
% 执行混合算法
[bestSchedule, bestFitness] = hybridAlgorithm();
disp('最优调度方案:');
disp(bestSchedule);
disp('最优适应度值:');
disp(bestFitness);