AGV配送与调度优化算法毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)柔性作业车间调度问题(FJSP)的分析与建模 研究首先对FJSP问题进行了深入分析,考虑了工序与机器排产的约束,并以最小化最大完工时间作为优化目标。在此基础上,建立了FJSP的数学模型,该模型考虑了工序间依赖关系、机器可用性以及物料配送时间。研究分析了AGV在作业车间中的运载方式,包括装载和卸载策略,并选取了合适的工序分派策略与装载站驻留策略。这些策略的选取对于优化物料流转路径和减少等待时间具有重要意义。

(2)FJSP与AGV集成调度问题(FJSP-AGV)的分析与建模 在FJSP数学模型的基础上,本研究进一步分析了FJSP与AGV集成调度问题,考虑了AGV在装载站、卸载站与机器之间的空载与负载两种运行状态。研究确定了增加AGV选择后问题的约束条件,并建立了FJSP-AGV集成优化问题的数学模型。该模型不仅包括了传统的FJSP约束,还增加了AGV路径规划和调度的约束,使得模型更加贴近实际生产环境。

(3)改进鲸鱼优化算法(IWOA)在FJSP问题中的应用 针对FJSP问题,本研究提出了一种改进鲸鱼优化算法(IWOA)。该算法通过设计工序加工与机器选择的双层编码方式和机器贪婪解码方案,提高了算法的搜索效率。此外,提出了一种非线性收敛因子和自适应改进策略,进一步提升了算法的自适应能力。与原始的鲸鱼优化算法相比,IWOA在给定的性能指标下取得了更好的优化结果。

(4)混沌麻雀算法(HSSA)在FJSP-AGV问题中的应用 针对FJSP-AGV问题,本研究提出了一种混沌麻雀算法(HSSA)。该算法设计了一种针对工序排列、机器选择和AGV选择的三层编解码方式。通过引入Hénon混沌映射优化初始种群,并结合自适应改进策略与跟随者的多项学习策略,提升了算法的全局和局部搜索能力。与麻雀搜索算法相比,HSSA具有更快的收敛速度和更好的优化性能。


% jobs: 作业集合
% machines: 机器集合

% 初始化IWOA算法参数
numWhales = 50;
numIterations = 100;
whales = initializeWhales(numWhales, jobs, machines);
bestSolution = whales(1, :);

% 迭代优化
for iter = 1:numIterations
    for i = 1:numWhales
        % 更新鲸鱼位置
        whales(i, :) = updatePosition(whales(i, :), bestSolution);
        
        % 评估鲸鱼适应度
        fitness = evaluateFitness(whales(i, :), jobs, machines);
        
        % 更新最佳解
        if fitness < bestSolution.fitness
            bestSolution = whales(i, :);
        end
    end
    
    % 更新全局最佳解
    [bestSolution, bestFitness] = updateGlobalBest(whales, bestSolution);
    
    % 非线性收敛因子和自适应改进策略
    updateAdaptation(whales, bestSolution, iter, numIterations);
end

% 输出最优解
disp('最优作业调度方案:');
disp(bestSolution);
disp('最小化的最大完工时间:');
disp(bestFitness);

% 定义鲸鱼初始化函数
function whales = initializeWhales(numWhales, jobs, machines)
    % ... 实现鲸鱼初始化逻辑 ...
end

% 定义鲸鱼位置更新函数
function newposition = updatePosition(whale, bestSolution)
    % ... 实现鲸鱼位置更新逻辑 ...
end

% 定义适应度评估函数
function fitness = evaluateFitness(whale, jobs, machines)
    % ... 实现适应度评估逻辑 ...
end

% 定义全局最佳解更新函数
function [bestSolution, bestFitness] = updateGlobalBest(whales, bestSolution)
    % ... 实现全局最佳解更新逻辑 ...
end

% 定义自适应改进策略函数
function updateAdaptation(whales, bestSolution, iter, maxIter)
    % ... 实现自适应改进策略逻辑 ...
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值