轴承故障诊断方法毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 基于自适应变分模态分解的轴承信号分解与故障特征提取

滚动轴承在机械系统中起着关键作用,其故障可能对设备的正常运行造成严重威胁。为了有效诊断轴承的早期故障,信号分解成为至关重要的步骤。在轴承信号的分解过程中,变分模态分解(VMD)因其良好的分解性能得到广泛应用。VMD能够将复杂的非线性和非平稳信号分解为一系列具有特定频率特征的本征模态函数(IMF),从而更好地提取信号中的故障特征。然而,传统VMD算法在实际应用中往往面临着预设模态数目(即k值)的问题,不合理的k值设定会影响分解的精度和效率。

为了解决这一问题,本文提出了一种基于自适应变分模态分解的轴承信号分解方法。该方法结合了互补集成经验模态分解(CEEMD)技术,通过自适应方式确定k值,以确保在分解过程中能够有效捕捉轴承故障特征。同时,本文还设计了一种基于能量和中心频率的阈值判断机制,用以评估所选k值的合理性。通过该方法,分解后的IMF能够更准确地反映故障信号的不同频率成分,减少了由于参数设置不当带来的分解失真。

实验结果表明,本文提出的自适应VMD算法能够快速收敛,并显著提高了分解的精度。在分解复杂的轴承故障信号时,该算法能够较好地分离不同的模态成分,为后续的特征提取奠定了坚实基础。此外,与传统的VMD方法相比,自适应VMD在分解精度和计算效率上均有明显提升,这使得其在轴承故障诊断中的应用更具实用性。

(2) 基于融合策略的特征提取与改进降维方法

在轴承故障诊断中,特征提取是至关重要的一环。现有的特征提取方法多集中于从时域、频域或时频域等单一维度提取信号特征,这容易导致提取的信息不充分,进而影响故障诊断的准确性。为了克服这一问题,本文提出了一种基于融合策略的多维度特征提取方法。该方法能够从时域、频域以及熵值等多维度对信号进行全方位分析,提取出更为全面的特征信息。

具体来说,时域特征主要包括均值、方差、峰值等描述信号幅值变化的特征,频域特征则包括主要频率成分的幅值和频率分布,而熵值特征可以揭示信号的复杂性。通过融合这些不同维度的特征,本文构建了一个包含丰富信息的特征向量,从而克服了单一维度特征信息不全的问题。这种融合特征提取方法能够更好地表征轴承故障信号,提升了故障诊断的准确性和鲁棒性。

在特征提取完成后,如何有效地降维以提高计算效率和模型泛化能力是另一个关键问题。针对传统降维算法中相似性度量不充分、降维效果不佳的问题,本文提出了一种基于距离改进的局部线性嵌入(LLE)方法。该方法通过引入皮尔逊相关系数计算样本间的测地距离,并在降维过程中去除冗余信息,确保特征空间中的数据分布具有更好的区分性。

实验结果表明,本文提出的融合特征提取和改进LLE降维方法能够在保持主要特征信息的同时,显著提高轴承故障数据的可区分性。在实际应用中,该方法不仅在计算效率上表现优异,还能够更好地适应复杂的故障模式,为后续的故障分类提供了更有效的特征向量。

(3) 基于改进随机配置网络的智能故障诊断方法

随着机器学习和智能算法在工业领域的广泛应用,越来越多的研究者开始关注如何通过智能化的方法对轴承故障进行自动诊断。随机配置网络(RVFL)是一种常用于快速训练的神经网络模型,其凭借输入参数的随机配置和输出权重的线性求解,能够实现高效的建模和诊断。然而,传统的RVFL模型在应用于轴承故障诊断时存在泛化能力不足、建模效率低等问题,限制了其实际应用。

针对这一问题,本文提出了一种基于改进随机配置网络的轴承故障诊断方法。首先,在输入参数随机选取过程中,本文采用了高斯分布的随机策略,以提高输入层节点的分布多样性。其次,在网络的隐藏层中,本文引入了强化学习的思想,动态调整激活函数的配置方式,使得网络能够在不同的故障模式下自适应选择最优的激活函数组合。最后,针对模型输出权重的计算,本文引入了正则化策略,以防止过拟合问题的出现,从而提高了模型的泛化能力。

通过上述改进,本文所提出的改进RVFL模型能够更快速地完成轴承故障诊断建模,且在面对复杂的故障模式时,模型的诊断准确率和鲁棒性显著提升。实验结果表明,与传统的神经网络模型相比,改进RVFL在轴承故障诊断任务中的表现更为优异,特别是在小样本数据集上,改进RVFL能够更加有效地提取故障特征,并做出准确的故障分类。

% 变分模态分解和随机配置网络的轴承故障诊断代码
clear;
clc;

% 加载轴承故障数据
load('bearing_data.mat'); % 假设数据文件存在

% 数据预处理
data = preprocess(bearing_data); % 自定义预处理函数
N = length(data);
t = 1:N;

% 变分模态分解参数
K = 4; % 模态数量
alpha = 2000; % 惩罚参数
tau = 0; % 时延

% 变分模态分解
[imfs, residual] = vmd(data, K, alpha, tau); 

% 提取特征
time_domain_features = extract_time_domain(imfs); % 提取时域特征
frequency_domain_features = extract_frequency_domain(imfs); % 提取频域特征
entropy_features = extract_entropy(imfs); % 提取熵值特征

% 构建融合特征向量
features = [time_domain_features, frequency_domain_features, entropy_features];

% 特征降维(使用改进的局部线性嵌入)
reduced_features = lle(features, 2); % 使用2维降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值