✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)风光出力场景生成与分析
- 在低碳发展的大趋势下,分布式电源如风力发电和光伏发电以及电动汽车得到了广泛发展。但风电和光伏出力受天气影响大,具有不确定性,电动汽车充电状态和需求也无明显规律,这给配电网的供需平衡带来挑战,因此需进行优化调度。首先,为有效刻画风力和光伏发电出力规律,对历史风力和光伏出力数据进行核密度估计,以获取其概率分布函数。例如,通过分析某地区多年的风力发电数据,发现不同季节和天气条件下,风力发电出力有明显差异,核密度估计能更准确地描述这种出力的概率分布情况。
- 考虑风光相关性,采用 Frank - Copula 函数,通过采样获取大量风光联合出力场景。因为风电场和光伏电站往往位于同一区域,它们的出力可能存在一定的关联,比如在某些天气条件下,风力较大时阳光可能较弱,反之亦然。Frank - Copula 函数能较好地捕捉这种相关性,从而生成更符合实际情况的联合出力场景。
- 进一步通过 Rough k - means 算法获取典型的风电光伏出力场景。这样可以从大量的场景中筛选出具有代表性的场景,减少后续计算的复杂度。比如在一个包含众多风光联合出力场景的数据集里,通过 Rough k - means 算法可以将相似的场景聚类,选取每个聚类中的典型场景作为后续分析的基础,以便更高效地进行分布式电源的优化调度规划。
(2)电动汽车充电负荷时空分布模拟
- 为准确刻画电动汽车充电负荷时空分布,从不同类型电动汽车出行特征出发。不同类型的电动汽车,如私家车、公交车、出租车等,其出行规律有很大差异。私家车的出行通常与居民的日常作息相关,白天主要用于通勤和购物等,晚上则回到住所充电;公交车有固定的运营线路和时间表,充电时间一般集中在非运营时段;出租车的出行则更加随机,充电需求也相对分散。
- 基于统计数据获得不同类型电动汽车时空特征概率分布。通过收集大量的电动汽车出行数据,包括出行时间、出行地点、行驶里程等,分析这些数据的统计规律,得到不同类型电动汽车在不同时间段和不同区域的出行概率分布。例如,在一个城市中,通过对私家车的出行数据进行分析,发现工作日早上 7 - 9 点和下午 5 - 7 点是出行高峰期,而周末的出行时间则相对分散。
- 通过蒙特卡洛仿真模拟电动汽车出行及充电选择,得到充电负荷时空分布。蒙特卡洛仿真可以根据概率分布随机生成大量的电动汽车出行和充电场景,从而模拟出整个区域内电动汽车充电负荷在时间和空间上的分布情况。比如在一个城市的电网规划中,通过蒙特卡洛仿真可以预测不同区域在不同时间段的充电负荷需求,为充电站的布局和容量规划提供依据,避免因充电负荷集中而导致电网过载或局部供电不足的问题。
(3)双层优化调度模型建立与应用
- 考虑多种类型电动汽车接入充电站的条件下,建立双层优化调度模型。对于上层优化调度模型,以充电站的收益最大化为优化目标。在分时电价策略下,充电站的收益与电动汽车的充电时间和电价密切相关。例如,在用电低谷期,电价较低,鼓励电动汽车充电可以降低充电成本,同时增加充电站的收益;而在用电高峰期,电价较高,适当控制充电量可以避免电网过载,同时通过合理安排充电时间,如引导用户在低谷期充电,提高充电站的整体收益。采用拉格朗日松弛法实现电动汽车的有序充电调度,该方法可以将复杂的约束优化问题分解为多个较简单的子问题进行求解,提高计算效率。
- 对于下层优化调度模型,将配电网运行的安全性和经济性作为目标函数。安全性方面主要考虑潮流平衡、节点电压的限值、线路传输的限值等条件。例如,要确保电网中的电流和电压在安全范围内,避免因过载或电压过高过低而影响电网设备的正常运行和使用寿命。经济性方面则考虑发电成本、网络损耗等因素,通过优化分布式电源机组的出力,使配电网在满足安全运行的前提下,降低运行成本。以潮流平衡为例,要保证电力在电网中的传输满足基尔霍夫电流定律和基尔霍夫电压定律,使各个节点的流入电流和流出电流相等,电压保持稳定。
- 通过 IEEE33 节点配电系统仿真算例验证,本文提出的调度方案可实现配电网的安全与经济运行。在该仿真算例中,将本文建立的双层优化调度模型应用于 IEEE33 节点配电系统,模拟不同场景下分布式电源和电动汽车的运行情况。通过对仿真结果的分析,发现该调度方案能够有效地协调分布式电源和电动汽车的充电行为,使配电网的电压、电流等参数保持在合理范围内,同时降低了网络损耗和发电成本,提高了配电网的整体运行效率和经济性,证明了该调度方案的有效性和可行性。
numNodes = 33; % IEEE33节点配电系统的节点数
numTimeSlots = 24; % 一天的时间槽数量
baseLoad = rand(numNodes, numTimeSlots); % 基础负荷(随机生成示例数据)
windPower = rand(numNodes, numTimeSlots); % 风电功率(随机生成示例数据)
solarPower = rand(numNodes, numTimeSlots); % 光伏功率(随机生成示例数据)
price = rand(numTimeSlots, 1); % 分时电价(随机生成示例数据)
% 初始化变量
chargingLoad = zeros(numNodes, numTimeSlots); % 电动汽车充电负荷
totalLoad = zeros(numNodes, numTimeSlots); % 总负荷
powerFlow = zeros(numNodes, numNodes, numTimeSlots); % 潮流
voltage = zeros(numNodes, numTimeSlots); % 节点电压
% 上层优化:充电站收益最大化
for t = 1:numTimeSlots
% 假设简单的充电策略,根据电价和负荷情况决定充电量
for n = 1:numNodes
if price(t) < 0.5 % 假设电价阈值为0.5(这里为示例)
chargingLoad(n, t) = baseLoad(n, t) * 0.2; % 增加充电量,这里为示例比例
else
chargingLoad(n, t) = baseLoad(n, t) * 0.1; % 减少充电量,这里为示例比例
end
end
totalLoad(:, t) = baseLoad(:, t) + chargingLoad(:, t) - windPower(:, t) - solarPower(:, t);
end
% 下层优化:配电网安全与经济运行
for t = 1:numTimeSlots
% 潮流计算(这里使用简单的功率流算法示例,实际可能需要更复杂的算法)
for i = 1:numNodes
for j = 1:numNodes
if i ~= j
impedance = rand(1); % 假设线路阻抗(随机示例)
powerFlow(i, j, t) = (voltage(i, t) - voltage(j, t)) / impedance;
end
end
end
% 节点电压计算(这里为简单示例,实际可能需要考虑更多因素)
for n = 1:numNodes
voltage(n, t) = sum(powerFlow(:, n, t));
end
% 检查安全性约束(这里为简单示例,实际需要更严格的检查)
if any(voltage < 0.9) || any(voltage > 1.1) % 假设电压安全范围为0.9 - 1.1(示例)
disp('电压越限,需要调整调度策略');
end
end
% 显示一些结果(示例)
disp('总负荷:');
disp(totalLoad);
disp('节点电压:');
disp(voltage);
disp('潮流:');
disp(powerFlow);
% 可以进一步添加计算成本、收益等功能(这里为示例框架,未详细实现)
cost = 0;
revenue = 0;
for t = 1:numTimeSlots
cost = cost + sum(price(t) * totalLoad(:, t)); % 计算总成本(假设发电成本与总负荷成正比)
revenue = revenue + sum(price(t) * chargingLoad(:, t)); % 计算充电收入
end
disp('总成本:');
disp(cost);
disp('总收益:');
disp(revenue);