✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)随着物联网技术的不断发展,基于位置服务的需求也在不断增加。其中,基于Wi-Fi的信道状态信息(CSI)室内定位技术因其能够充分利用现有的基础设施,并且有效降低了非视距对定位产生的影响,使得信号更加稳定而受到广泛关注。同时,深度学习的持续发展为室内定位研究开拓了新的方向。本文主要针对CSI和深度学习进行室内定位的研究。
首先,本文提出了一种基于高斯混合模型和密度聚类(GMM-DBC)的信道状态信息定位算法,以解决贝叶斯室内定位技术存在的定位精度低及时间复杂度高的问题。该算法通过以下几个步骤实现:
初始参数估计与GMM模型构建:在初始阶段,通过对分模型参数的初次估计来构建GMM概率分布模型。这些参数包括每个高斯分量的均值、方差和权重。通过这种方法,可以初步建立一个描述CSI数据的概率分布模型。然后,计算误差,即实际CSI数据与GMM模型预测值之间的差异。这一步骤有助于评估模型的拟合程度,并为进一步优化提供依据。
确定分模型个数策略:为了进一步提高模型的准确性,引入了确定分模型个数(DSM)策略。这个策略结合了误差计算结果,动态调整GMM模型中的分模型数量。通过这种方式,可以更准确地捕捉CSI数据的分布特性,从而减少由于模型精度不足引起的定位误差。
密度聚类与参考点分类:基于不同参考点的分布特征,使用密度聚类方法判断参考点间的紧密程度。将紧密相连的参考点划分为一类,这样可以减小搜索范围,降低时间复杂度。密度聚类通过计算每个参考点的局部密度和距离来识别簇中心,并将具有相似特性的参考点归为同一类。
改进的贝叶斯概率算法:根据分簇结果,利用改进的贝叶斯概率算法进行权值计算,得到最终定位结果。改进的贝叶斯算法通过考虑各个簇内参考点的贡献,动态调整权值,从而提高了定位精度。具体来说,对于每个待定位点,计算其属于各个簇的概率,并根据这些概率加权求和,得到最终的位置估计。
仿真实验结果显示,所提出的GMM-DBC算法在定位误差为2.75米以内时,累积概率分布达到了93.3%,平均定位时间为13.2秒,优于其他对比算法。这表明该算法不仅提高了定位精度,还显著降低了计算时间,具有较高的实用价值。
(2)为了进一步提高CSI室内定位中的特征提取能力和定位精度,同时降低定位时间,本文提出了另一种基于改进过采样算法和图卷积神经网络(PS-GCN)的CSI室内定位算法。该算法主要通过以下几个方面实现:
改进的过采样算法:在CSI指纹数据库建立过程中,面临着数据维度过高、样本不足以及数据缺失等问题。为此,本文提出了一种改进的过采样算法。该算法通过降维技术减少了数据维度,解决了数据不平衡问题。具体来说,通过主成分分析(PCA)等方法,提取出最具代表性的特征向量,减少了冗余信息。此外,采用合成少数类过采样技术(SMOTE)生成新的样本,以增加训练集的多样性,提高模型的泛化能力。
图卷积神经网络(GCN):为了克服CSI相位扭曲导致的有效位置特征提取困难的问题,引入了图卷积神经网络(GCN)。GCN能够在非欧氏空间中处理具有多重相关性的数据,提取出更丰富的特征。具体而言,GCN通过构建子载波之间的邻接矩阵,挖掘子载波之间的关系,并通过图卷积操作聚合节点向量。这样,GCN能够从CSI数据中提取出更多有用的信息,提高特征提取能力。
余弦距离与端到端监督训练:通过余弦距离建立子载波之间的邻接矩阵,尽可能多地挖掘子载波之间的关系。余弦距离是一种常用的相似性度量方法,它能够有效地反映两个向量之间的夹角,适用于高维数据。基于邻接矩阵,GCN可以通过图卷积操作聚合节点向量,提取出全局和局部特征。最后,应用端到端的监督训练,通过大量标注数据训练模型,使其能够自动学习到有效的特征表示。这种端到端的训练方式不仅简化了特征工程的过程,还能使模型更好地适应不同的应用场景。
仿真实验结果表明,所提出的PS-GCN算法在定位误差为2.75米以内时,累积概率分布达到了93.8%,平均定位时间为1.04秒,明显优于其他对比算法。这说明PS-GCN算法不仅提高了定位精度,还大幅缩短了定位时间,具有更高的实时性和实用性。
(3)本文提出的两种CSI室内定位算法——GMM-DBC和PS-GCN,分别从不同的角度解决了现有室内定位技术中存在的问题。GMM-DBC算法通过高斯混合模型和密度聚类方法,提高了贝叶斯室内定位的精度和效率;而PS-GCN算法则通过改进的过采样技术和图卷积神经网络,提升了特征提取能力和定位精度,同时降低了计算时间。
GMM-DBC算法的优势:GMM-DBC算法通过构建GMM模型并进行误差计算,动态调整模型参数,确保了模型的准确性。通过密度聚类方法,将参考点划分为多个簇,减小了搜索范围,降低了时间复杂度。改进的贝叶斯概率算法则通过动态调整权值,进一步提高了定位精度。整体来看,GMM-DBC算法在保证较高定位精度的同时,显著降低了计算时间,适用于对实时性要求较高的场景。
PS-GCN算法的优势:PS-GCN算法通过改进的过采样技术解决了数据维度高和样本不足的问题,提高了数据的质量和多样性。图卷积神经网络的应用使得算法能够从CSI数据中提取出更丰富的特征,提高了特征提取能力。余弦距离和端到端监督训练进一步增强了模型的学习能力,使其能够更好地适应复杂的室内环境。综合来看,PS-GCN算法在提高定位精度的同时,大幅缩短了定位时间,具有很高的实用价值。
% 参数设置
num_samples = 1000; % 样本数量
num_features = 10; % 特征数量
num_clusters = 5; % 聚类数量
num_iterations = 100; % 迭代次数
learning_rate = 0.01; % 学习率
% 生成模拟CSI数据
csi_data = randn(num_samples, num_features);
% 高斯混合模型 (GMM) 参数初始化
mu = randn(num_clusters, num_features);
sigma = ones(num_clusters, num_features, num_features) * eye(num_features);
weights = ones(1, num_clusters) / num_clusters;
% 密度聚类 (DBSCAN) 参数初始化
epsilon = 0.5; % 邻域半径
minPts = 5; % 最小点数
% GMM-DBC算法
for iter = 1:num_iterations
% E步:计算后验概率
posterior = zeros(num_samples, num_clusters);
for k = 1:num_clusters
posterior(:, k) = mvnpdf(csi_data, mu(k, :), sigma(k, :, :));
end
posterior = bsxfun(@times, weights, posterior);
posterior = posterior ./ sum(posterior, 2);
% M步:更新参数
Nk = sum(posterior, 1);
mu = (csi_data' * posterior)' ./ Nk;
for k = 1:num_clusters
diff = csi_data - repmat(mu(k, :), num_samples, 1);
sigma(:,:,k) = (diff' * diag(posterior(:, k)) * diff) / Nk(k);
end
weights = Nk / num_samples;
end
% 密度聚类 (DBSCAN)
distances = pdist2(csi_data, csi_data, 'euclidean');
core_points = find(sum(distances < epsilon, 2) >= minPts);
clusters = cell(1, num_clusters);
cluster_idx = 1;
for i = 1:length(core_points)
if ~isempty(find(clusters == core_points(i)))
continue;
end
cluster = [core_points(i)];
idx = 1;
while idx <= length(cluster)
neighbors = find(distances(cluster(idx), :) < epsilon);
cluster = unique([cluster, neighbors]);
idx = idx + 1;
end
clusters{cluster_idx} = cluster;
cluster_idx = cluster_idx + 1;
end
% 改进的贝叶斯概率算法
bayesian_weights = zeros(num_samples, num_clusters);
for i = 1:num_samples
for k = 1:num_clusters
bayesian_weights(i, k) = weights(k) * mvnpdf(csi_data(i, :), mu(k, :), sigma(k, :, :));
end
bayesian_weights(i, :) = bayesian_weights(i, :) / sum(bayesian_weights(i, :));
end
% 图卷积神经网络 (GCN) 参数初始化
adj_matrix = cosinedistance(csi_data); % 余弦距离邻接矩阵
feature_matrix = csi_data;
% GCN层定义
gcn_layer = graphConvolutionLayer(num_features, 'NumInputChannels', num_features, ...
'AdjacencyMatrix', adj_matrix, 'Normalization', 'sym');
% 构建GCN网络
layers = [
gcn_layer
fullyConnectedLayer(num_features)
reluLayer
fullyConnectedLayer(1)
regressionLayer
];
% 训练GCN网络
options = trainingOptions('adam', 'MaxEpochs', 100, 'MiniBatchSize', 32, 'InitialLearnRate', learning_rate);
net = trainNetwork(feature_matrix, feature_matrix, layers, options);
% 预测
predicted_csi = predict(net, feature_matrix);
% 输出最佳解
disp(['Best solution: ', num2str(predicted_csi)]);
disp(['Best fitness: ', num2str(mean(abs(predicted_csi - feature_matrix)))]);
% 绘制CSI数据和预测结果
figure;
plot(csi_data, 'b-', 'LineWidth', 1.5);
hold on;
plot(predicted_csi, 'r--', 'LineWidth', 1.5);
legend('Original CSI Data', 'Predicted CSI Data');
xlabel('Sample Index');
ylabel('CSI Value');
title('Comparison of Original and Predicted CSI Data');
grid on;