✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)积雪监测相关算法研究
- 本研究针对青藏高原地区积雪监测算法进行了改进和创新。首先是提出一种去云积雪图像合成算法,生成的青藏高原地区无云积雪分类图像(MA)在多种天气状况下表现出了极高的精度。无论是积雪分类精度达到 80.75%,还是总精度高达 97.52%,都充分证明了该算法的有效性。MA 图像融合了 MODIS 的高空间分辨率和 AMSR - E 不受天气影响的优势。这种优势在实际应用中意义重大,因为它使得在复杂天气条件下也能准确地监测积雪覆盖范围。在以往的研究中,天气因素往往是影响积雪监测精度的重要障碍,而 MA 图像有效地克服了这一难题。它大大提高了积雪监测的时空分辨率,为后续对雪灾频发地区积雪动态变化的深入研究提供了可靠的数据基础。例如在对一些山谷地区或者高海拔复杂地形区域的积雪监测中,传统方法可能因云层遮挡而无法获取准确数据,而 MA 图像合成算法可以有效解决这一问题,使研究人员能够更清晰地观察到积雪在这些区域的覆盖情况、变化趋势等,从而为雪灾预警和应对措施的制定提供更准确的依据。
- 同时,改进了积雪面积比例算法。通过与 TM 雪盖图对比可以发现,改进后的算法在误差控制方面有显著提升。雪盖面积标准误差从 0.35 降低到 0.22,平均绝对误差从 0.25 降到 0.18,相关系数也从 0.74 提高到 0.85 以上。这意味着改进后的算法能够更精确地计算积雪面积比例,对于准确评估积雪量和积雪覆盖程度有着重要意义。在大面积的高原牧区监测中,精确的积雪面积比例数据能够帮助相关部门更好地了解积雪对畜牧业的潜在影响。比如在评估某个牧区的积雪对牧草覆盖程度时,更准确的积雪面积比例数据可以让我们更清楚地知道牧草被积雪掩埋的情况,进而预测牲畜采食的困难程度,为预防雪灾对畜牧业的损害提供有力支持。
(2)雪深数据研究与气候变化对积雪的影响
- 在雪深数据方面,研究发现加拿大气候中心发布的数据在青藏高原地区并不适用。在不同积雪深度条件下,其误差较高,RMSE 达 47.70cm。这是由于青藏高原独特的地理环境和气候条件,使得通用的雪深数据无法准确反映当地的实际情况。与之相比,基于被动微波资料 SSM/I 和 AMSR - E 模拟的雪深数据表现出更好的性能。这些模拟数据与台站实测数据之间的误差较小,并且与青藏高原地区积雪空间分布的一致性较好。这一发现为青藏高原地区雪深监测提供了更合适的方法。在实际应用中,准确的雪深数据对于判断积雪对地面的压力、评估雪灾对基础设施(如牧民的简易房屋、牲畜棚等)的破坏程度以及预测雪灾的危害范围等都有着至关重要的作用。例如,在评估雪深对某一区域牧民定居点的影响时,更准确的雪深数据可以帮助确定是否需要提前采取加固房屋、转移牲畜等措施。
- 对 2003 - 2010 年青藏高原气候变化与积雪变化的关系研究表明,这一时期年平均温度、年降水量和积雪覆盖面积呈现出增加的趋势,年平均温度增加了 0.72℃,年平均降水增加 6.85mm,积雪覆盖面积增加 5.75%。然而,永久积雪面积和雪深却呈现出减少的趋势,8 年间永久积雪面积以每年 0.35% 的速率在减少,共计减少 2.80%;雪深减少约 2.40%,雪水当量下降 4.16%。这种复杂的变化趋势反映了气候变化对青藏高原积雪的深刻影响。温度升高可能导致部分积雪融化速度加快,尽管降水量增加使得积雪覆盖面积有所上升,但永久积雪和雪深的减少表明积雪的稳定性在下降。这种变化对于高原地区的水资源、生态系统和畜牧业都有重要影响。例如,雪水当量的下降可能影响到春季融雪时的水资源供应,进而影响到下游地区的灌溉和生活用水;积雪稳定性的变化也会改变草地被积雪覆盖的时间和程度,对牲畜的采食和生存环境产生影响。
(3)雪灾预警与监测系统开发
- 深入研究了影响青藏高原牧区雪灾发生的关键因子,包括年雪灾概率、积雪覆盖天数、载畜力、日均温 <-10℃的低温天数、草地掩埋指数、草地积雪覆盖率及畜均 GDP 等。这些因子从不同角度反映了雪灾对牧区的影响程度和潜在风险。依据受灾程度以及积雪对放牧牲畜采食影响情况,构建了一种牧区雪灾危害等级预警模型,并制定出青藏高原地区雪灾预警分级标准,同时提出了基于格网单元的雪灾风险评价方法。通过对青藏高原近 3 年(2008 - 2010 年)积雪季(10 - 12 月和翌年 1 - 3 月)各县(市)旬雪灾危害等级预警反演结果显示,雪灾危害等级预警模型总精度可达 85.64%。这一模型和标准为青藏高原牧区雪灾预警提供了科学、有效的方法。例如,在具体的牧区管理中,可以根据当地的载畜量、积雪覆盖天数等数据,利用预警模型和分级标准,提前判断雪灾的危害等级,从而及时采取相应的应对措施,如调整牲畜存栏量、储备饲料、组织牧民转移等,有效减少雪灾对畜牧业的损失。
- 在上述研究基础上,从系统设计体系结构、数据库建设、系统功能模块设计等多方面着手,设计并开发了基于 ArcGIS Server 和 Flex 技术的青藏高原牧区积雪监测与雪灾预警系统(http://snow.ecograss.com.cn/)。该系统整合了多种数据和算法,能够实时监测青藏高原牧区的积雪情况,并依据雪灾预警模型和分级标准,及时向相关部门和牧民发布雪灾预警信息。数据库中存储了大量的历史数据和实时监测数据,包括气象数据、积雪数据、畜牧业相关数据等,为系统的准确运行提供了数据支持。功能模块涵盖了数据采集、处理、分析、显示和预警等多个环节,例如数据采集模块可以获取来自遥感卫星、地面气象站等多种数据源的数据;分析模块则利用各种算法对数据进行处理和分析,得出积雪动态变化情况和雪灾风险评估结果;显示模块以直观的方式向用户展示数据和分析结果,方便用户理解和决策。这一系统的开发为青藏高原牧区的雪灾防灾减灾工作提供了强有力的技术支持,有助于保障当地草地畜牧业的可持续发展。
# 导入必要的库
import numpy as np
import cv2
# 读取积雪图像(这里假设图像格式为常见的图像格式,如 jpg、png 等)
image = cv2.imread('snow_image.jpg')
# 将图像转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 对灰度图进行阈值处理,假设我们要提取较亮的积雪部分(这里阈值是一个示例值,可根据实际情况调整)
_, threshold_image = cv2.threshold(gray_image, 200, 255, cv2.THRESH_BINARY)
# 进行一些形态学操作,如腐蚀和膨胀,去除噪声和填补小空洞
kernel = np.ones((5,5),np.uint8)
erosion_image = cv2.erode(threshold_image,kernel,iterations = 1)
dilated_image = cv2.dilate(erosion_image,kernel,iterations = 1)
# 计算积雪区域的面积(这里是简单计算白色像素点的数量作为面积的近似值)
snow_area = np.sum(dilated_image == 255)
print("积雪区域面积:", snow_area)