水体信息提取的面向对象空间分布分析毕业论文【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)基于多种遥感影像的水体提取方法与精度评价

  • 在遂宁市水体提取研究中,遥感技术和 GIS 技术是关键手段。以 Landsat - 8、Sentinel - 2 和 GF - 1 影像为数据源,首先深入研究不同遥感影像上各类地物的特征。从光谱特征来看,水体在不同波段有着独特的反射率表现,比如在近红外波段,水体的反射率通常较低,呈现出与其他地物明显的差异。通过分析这些光谱特征,可以初步区分水体与陆地、植被等。纹理特征方面,水体表面相对平滑,与具有复杂纹理的地物如建筑物、山地等有很大不同。几何特征上,水体有大面积连续分布的,也有线型狭长的和面积较小的斑块状等多种形态。波段组合特征也为水体提取提供了重要依据,例如通过特定波段的运算可以增强水体与其他地物的对比度。
  • 利用 eCognition 智能影像分析软件,针对每种影像的地物特征分别构建水体提取规则集。对于 Landsat - 8 影像,依据其波段特点和上述地物特征的分析结果,设定相应的阈值和规则来识别水体。比如,根据水体在某些波段的反射率范围,确定一个取值区间,当影像中的像素值落在这个区间内时,初步判断为水体。然后再结合纹理、几何等其他特征进一步筛选和确认。对于 Sentinel - 2 和 GF - 1 影像也采用类似的方法,但由于它们各自的波段参数和分辨率不同,规则集也有所差异。通过这些规则集完成研究区水体提取后,运用混淆矩阵结合 Kappa 系数对融合后的三种影像水体提取结果进行精度评价。结果显示,Landsat - 8 遥感影像的水体提取结果总体精度为 85.62%,其在一些复杂地形和地物交错区域可能存在一定的误判情况。例如在城市周边有小型水体与建筑阴影相邻时,可能会因为两者在某些波段的相似性而出现提取误差。哨兵 2 号遥感影像的水体提取结果总体精度为 88.05%,它在水体与植被过渡区域的判断上可能需要更精细的规则调整。而高分 1 号遥感影像的水体提取结果总体精度为 91.89%,其较高的空间分辨率使得在提取水体时能够更清晰地分辨出不同形态和大小的水体,尤其是对于小型斑块水体和线型狭长水体的提取更具优势,减少了因分辨率不足导致的水体破碎或误判问题。

(2)不同遥感影像水体提取结果综合分析

  • 综合对比三种遥感影像的水体提取结果可以发现,它们各有特点。对于面积开阔的明显水体,三种影像都能较好地完成提取任务。这是因为这些大面积水体在光谱、纹理等特征上表现明显,容易被识别。然而,对于线型狭长的水体和面积较小的斑块水体提取,高分 1 号数据优势显著。高分 1 号 2 米的空间分辨率能够清晰地呈现这些小型水体的边界和形态。比如在遂宁市的一些乡村地区,存在着许多灌溉用的小型水渠和池塘,高分 1 号影像可以准确地将它们提取出来,而 Landsat - 8 和 Sentinel - 2 影像可能会因为分辨率较低而将这些小型水体遗漏或者与周围地物混淆。
  • 在数据获取与处理方面,哨兵 2 号和 Landsat - 8 遥感影像有其独特的优势。它们相对便捷,能够在较长的时间跨度内获取大量数据,并且波段信息丰富。在大范围的应用研究中,这种优势得以充分发挥。例如,当研究遂宁市整个区域在较长时间内的水体变化趋势时,Landsat - 8 和 Sentinel - 2 可以提供足够多的数据点。而且它们丰富的波段信息可以用于多种分析,不仅仅局限于水体提取。比如可以通过不同波段组合分析水体与周边生态环境的关系,在研究水体对周边植被生长的影响等方面发挥作用。这种特点使得它们在满足时间跨度长、大范围的研究需求时表现出色,尽管在小型水体提取精度上稍逊于高分 1 号影像,但在整体研究中仍有不可替代的价值。

(3)基于 GIS 的水体空间分布分析与应用研究

  • 利用 GIS 软件强大的空间分析功能,深入探究遂宁市水体在各行政区的空间分布情况。通过将水体数据与行政区划数据进行叠加分析,可以清晰地看到不同行政区内水体的分布密度、面积大小等情况。例如,某些行政区内可能有较多的大型湖泊和河流,而另一些行政区则以小型水体如池塘等为主。这种空间分布特征对于水资源的管理和规划有着重要意义。结合高程数据进一步分析,发现研究区水体在不同高程区域有着特定的分布规律。在较低高程区域,水体分布相对集中,这可能与水流汇聚等自然因素有关。而在一定高程以上,水体数量和面积逐渐减少。坡度因素也对水体分布产生影响,较缓的坡度有利于水体的汇集和留存,而在陡坡区域水体往往难以形成大面积的聚集。
  • 地形位指数和景观分离度指数的引入为水体分布的分级研究提供了更全面的视角。地形位指数可以反映水体在地形中的相对位置和重要性,对于评估水体在区域生态系统中的功能有很大帮助。景观分离度指数则从景观生态学的角度分析水体与周边景观要素的分离程度。例如,当水体与周边植被的景观分离度较高时,可能意味着该水体的生态连通性较差,需要在生态修复等工作中加以关注。通过这些分析发现,研究区水体在不同地形和景观条件下呈现出多样化的分布特征。从时间序列上看,2002 - 2019 年期间,遂宁市水体面积发生了明显变化。前期水体面积减少了 122.7 hm²,这可能与城市建设、水资源不合理利用等因素有关。而后期水体面积增加了 1825.41 hm²,净增加 1702.71 hm²,这主要得益于水利建设的加快。这些数据表明,科学合理的水资源开发对遂宁市意义非凡。在城市生态环境方面,新增的水体可以调节局部气候、增加空气湿度、改善城市热岛效应等。对于居民日常生活而言,充足的水资源保障了居民的用水需求,提高了生活质量。在社会经济发展中,水资源的合理利用可以促进农业灌溉、工业生产等相关产业的发展,同时缓解了遂宁市水资源分布不均造成的工程性缺水和季节性缺水问题,为城市的可持续发展提供了有力支持。

 

from osgeo import gdal
import matplotlib.pyplot as plt

# 打开遥感影像(这里以 Landsat - 8 影像为例,假设影像路径为 'landsat_image.tif')
dataset = gdal.Open('landsat_image.tif')

# 获取影像的宽度和高度
width = dataset.RasterXSize
height = dataset.RasterYSize

# 获取影像的波段数
bands_count = dataset.RasterCount

# 读取影像数据(这里读取第一个波段的数据作为示例)
band_data = dataset.GetRasterBand(1).ReadAsArray(0, 0, width, height)

# 使用 matplotlib 显示影像数据
plt.imshow(band_data, cmap='gray')
plt.title('Landsat - 8 Band 1 Image')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值