浙江省洪涝灾害的风险评估研究:遥感与GIS结合毕业论文【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)浙江省洪涝灾害风险评估基于遥感与GIS技术,充分利用了多源数据,结合现代空间分析手段,为浙江省的洪涝灾害防治提供了科学的基础支持。首先,利用历史MODIS数据提取洪涝水体淹没频次信息进行洪涝灾害危险性初步评估。洪涝水体淹没频次是衡量洪涝灾害发生危险性的重要指标,基于MODIS影像的时间序列分析技术,本文提取了2003至2012年间浙江省主要河流水系在汛期的洪涝水体淹没范围。通过ENVI4.2软件中的波谱分析、波段运算以及决策树等功能,对MOD09Q1产品进行了水体提取,以确定浙江省洪涝灾害发生的时空分布特征。对这些提取的水体数据进行了长时间序列的统计分析,最终形成洪涝水体的淹没频次分布图,为洪涝灾害的空间危险性评估提供了可靠的数据基础。

在危险性评估的过程中,数据处理技术的使用极为关键。遥感数据提供了全局性、长期性的观测能力,而地理信息系统(GIS)则可以精确处理这些数据以得出相应的结果。通过结合历史遥感影像的数据处理和分析,本文系统地揭示了浙江省洪涝灾害的发生频次以及相应的空间分布特征。该部分研究为后续的风险评估奠定了坚实的基础,使得洪涝灾害的空间分布可以被定量化分析,并为采取针对性措施提供了科学依据。

(2)浙江省洪涝灾害风险评估进一步细化为危险性、暴露性、脆弱性和防灾减灾能力四个一级指标,通过对这些指标进行多维度的综合分析,评估了洪涝灾害的综合风险水平。在洪涝灾害的危险性评估中,本文选取了相对高程、绝对高程、多年平均最大三天降雨量、河网密度等指标,这些指标可以有效反映洪涝灾害发生的物理条件。在暴露性方面,考虑了人口密度、单位面积GDP等社会经济数据,这些数据可以反映受灾人口和财产的暴露程度。脆弱性方面,选取了单位面积老少人口数、耕地面积百分比等指标,用于衡量社会对洪涝灾害的承受能力。防灾减灾能力方面则包括了防洪标准、除涝标准、监测预警能力、医救能力、自救能力和财力支持能力等,这些指标主要用于衡量当地政府和社会在面对洪涝灾害时的应对和救援能力。

在上述各项指标的基础上,本文利用层次分析法(AHP)确定了各指标的权重,采用模糊综合评价法(FCA)对浙江省洪涝灾害的风险进行了综合评估。首先,通过ArcGIS进行各项指标的标准化处理,将所有指标的数值转化为无量纲的值,并利用AHP法确定各个指标在风险评估中的权重。接下来,利用FCA方法对标准化的各项指标数据进行综合分析,得到了浙江省洪涝灾害风险的分布图。通过栅格化数据的处理,每个1km²1km的格网单元均有相应的洪涝风险评分,使得该部分研究可以对浙江省不同区域的洪涝风险做出精细化评估。这种方法不仅提高了风险评估的精度,也使得各区域的洪涝风险可以被量化比较,从而更好地支持科学决策。

(3)洪涝灾害风险评估的结果最终通过栅格单元和县级行政单元两种尺度来表达,从而兼顾了空间分辨率的精细化和行政管理的需求。根据评估结果,浙江省的洪涝灾害高风险区主要集中在东部沿海地区,尤其是浙北杭嘉湖平原、浙东宁绍平原以及浙东南的温黄平原。这些地区地势低平、人口密集、经济发达,洪涝灾害的发生频率和破坏性都较高,因此成为了高风险区域。而在浙江省西部山地区域,由于地势起伏较大,相对高程较高,洪涝灾害的发生概率较低,因此大部分区域的洪涝灾害风险为中等。在浙江省的中部地区,如金华、衢州等地,由于地形和经济社会条件的多样性,其洪涝灾害风险则表现为较低。

从县级行政单元的风险评估结果来看,浙江省的洪涝高风险区域主要集中在沿海平原和一些城市化程度较高的区域,具体包括平湖市、桐乡市、海盐县、海宁市、慈溪市、台州市区、温岭市、永嘉县等地。这些地区由于地势低洼、河网密布,加之人口和经济活动的密集,使得洪涝灾害的风险显著较高。而在西部山区,龙游县、开化县等地的洪涝风险则相对较低,主要是由于这些地区地形复杂,洪水难以形成大面积积水。同时,在洪涝灾害的中等风险区域中,余姚市、上虞市、宁海县等地的洪涝风险虽不如沿海地区高,但由于历史上发生过洪涝灾害,因此仍需保持警惕。

通过对洪涝灾害风险评估结果的分析,本文进一步探讨了洪涝灾害的成因及其空间分布特征。浙江省的洪涝灾害主要由台风带来的强降雨和沿海地区的地势低平共同作用所致。沿海地区由于台风影响频繁,再加上地势低洼,排水能力较差,往往成为洪涝灾害的重灾区。而中部和西部地区,由于地势较高且降雨量相对较少,洪涝灾害的影响相对较轻。这种区域性的洪涝风险差异为浙江省不同区域制定差异化的防灾减灾措施提供了依据。具体来说,沿海高风险地区应重点加强防洪排涝基础设施建设,提高洪水监测预警能力和社区自救能力;而对于中西部的中低风险地区,则应做好应急预案,确保在极端天气条件下可以迅速应对,降低洪涝灾害对当地居民的影响。

import arcpy
from arcpy import env
from arcpy.sa import *

# 设置工作空间
env.workspace = "C:/data/ZhejiangFloodRisk"

# 定义输入数据
elevation_raster = "elevation.tif"
rainfall_raster = "rainfall_max_3day.tif"
population_density = "population_density.tif"
river_density = "river_density.tif"

# 计算洪涝危险性因子
slope = Slope(elevation_raster)
flow_accumulation = FlowAccumulation(elevation_raster)
rainfall_weighted = Raster(rainfall_raster) * 0.3

# 综合危险性分析
flood_hazard = (slope * 0.2) + (flow_accumulation * 0.3) + (rainfall_weighted * 0.5)
flood_hazard.save("flood_hazard.tif")

# 计算暴露性因子
exposure = Raster(population_density) * 0.4 + Raster(river_density) * 0.6
exposure.save("exposure.tif")

# 综合风险评估
flood_risk = flood_hazard * 0.6 + exposure * 0.4
flood_risk.save("flood_risk.tif")

print("洪涝灾害风险评估完成")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值