基于深度学习的MIMO信道智能预测模型研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)多通道并行的MIMO信道预测方法研究 在深度学习框架下,针对MIMO系统中的上行到下行信道预测问题,分析了深度学习相较于传统方法的优势,并探讨了基于深度学习的MIMO系统中上行到下行信道预测中存在的问题。利用卷积神经网络(CNN)结合信道数据之间的空间相关性,提出了一种从上行信道到下行信道的信道预测方法。考虑到信道数据在时域、频域、天线域的全局相关性,结合全卷积层的CNN结构,设计了多路并行的信道预测神经网络结构。通过生成不同场景、不同用户速度、不同天线规模等条件的信道数据集,并通过神经网络误差分析、仿真模拟传输验证上行到下行信道预测方法的综合性能

(2)大规模MIMO系统时频空联合信道外推方法研究 分析了深度学习在信道外推问题上的优势,并根据不同应用场景下的信道外推原理,对各个应用场景下基于深度学习的信道外推问题以及所有应用场景下的共性问题进行了探讨。基于信道数据在时频空域的全局相关性,提出了一种基于CNN的时频空域联合信道外推方法。考虑到多路并行上行到下行信道预测方法在多域联合预测中的性能,根据其神经网络结构设计了用于多域联合信道外推方法的神经网络结构。通过神经网络误差分析、波束选择仿真验证了多域信道外推方法的准确性和稳定性

(3)大规模MIMO上下行预测与信道外推联合预测方法研究 针对同时具有上行到下行信道预测和时频空域信道外推需求的应用场景,对上下行信道预测和信道外推联合预测方法的优势进行讨论,并提出了不同的联合预测方法。通过仿真对比实验,从预测准确性和应用场景范围等角度对不同的联合预测方法进行评估,并重点关注具有明显优势的方法,分析了各自的优势和劣势以及适合的使用场景

 

% 初始化参数
close all;
clear all;
rng('shuffle');
nbrOfMonteCarloRealizations = 1000;
nbrOfCouplingMatrices = 50;
Nt = 8; % 发射天线数
Nr = 4; % 接收天线数
totalTrainingPower_dB = 0:1:20;
totalTrainingPower = 10.^(totalTrainingPower_dB/10);
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');

% 初始化均方误差矩阵
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2);
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2);

% 蒙特卡洛仿真
for statisticsIndex = 1:nbrOfCouplingMatrices
    V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;
    V = Nt*Nr*V/sum(V(:));
    R = diag(V(:));
    R_T = diag(sum(V,1));
    R_R = diag(sum(V,2));
    
    % 训练功率分配
    trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower));
    for k = 1:length(totalTrainingPower)
        trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt;
        trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);
    end
    
    % 特征值排序和功率分配
    [eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend');
    [~,inversePermutation] = sort(permutationorder);
    q_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));
    for k = 1:length(totalTrainingPower)
        alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)';
        optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0);
        q_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2);
    end
    q_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:);
    
    % 信道和噪声的蒙特卡洛仿真
    vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2);
    vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2);
    
    % 计算均方误差
    for k = 1:length(totalTrainingPower)
        P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr));
        average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R);
        H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations);
        average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) );
        
        P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr));
        average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R);
        H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations);
        average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) );
    end
end

% 均方误差计算函数
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
P_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));
MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值