固态变压器中压高频变压器的绝缘建模与局部放电下的电场屏蔽多目标优化设计【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 中压高频变压器的绝缘设计挑战与创新结构

中压高频变压器是能量路由器中不可或缺的核心元件之一,其高功率密度运行需要变压器具备更高的绝缘能力,同时还需在高频和高压条件下实现可靠的隔离性能。然而,在高频变压器的设计中,由于绝缘裕度小和电热应力大,主绝缘结构难以满足长期运行的可靠性要求。为此,本文首先提出了一种内外双层屏蔽的主绝缘新结构。通过对中压高频变压器的电应力特征进行详细分析,揭示了主绝缘电应力的分布规律,进而提出了基于应力束控的局放抑制思路。在此基础上,本文设计了内外双层屏蔽的新结构,通过内外屏蔽层的优化,降低了绝缘结构中的电压应力峰值,使得主绝缘耐压性能显著提升。此外,改进的内屏蔽层结构有效降低了高频损耗,进而减少了局部放电的风险,与现有的单层外屏蔽结构相比,主绝缘应力峰值降低了近50%。这种创新的绝缘设计为中压高频变压器实现高可靠性、高效率运行提供了有力保障。

(2) 出线端电应力缓释新结构的研究与应用

在中压高频变压器的出线端,由于界面处存在三态分界,极易发生绝缘击穿和沿面放电。因此,如何抑制出线端的局部放电是变压器绝缘设计中的一个重大挑战。本文针对出线端的电场畸变问题,提出了一种基于应力缓释材料的出线端电应力平抑新结构。在研究出线端电场集中与应力峰值诱因的基础上,通过界面阻抗重构的方法设计了应力缓释结构,进一步通过宽频域、宽温域和宽场域的实验测试,选取了最适合的高介电应力缓释材料。使用该材料进行外部附加后,出线端的电应力分布更加均匀,使得电场峰值降低到空气击穿场强的50%以下,成功抑制了出线端的绝缘击穿问题。在宽温度范围内,出线端电应力缓释结构表现出良好的稳定性和可靠性,这为中压高频变压器的高可靠性运行提供了必要的技术支撑。

(3) 中压高频变压器的综合优化设计方法

高频变压器的设计需要同时考虑多种物理场的相互耦合,包括电场、磁场和热场等,如何在这些耦合因素的制约下实现高质高效的设计,是中压高频变压器设计的一个重要难题。本文提出了一种融合解析模型和有限元模型的分步综合优化设计方法。首先,本文对现有的解析求解法和有限元计算法进行了系统的优缺点分析,基于解析模型仿真速度快和有限元模型仿真精度高的特点,将两者融合使用。在设计初期,采用基于损耗、漏感和温升的解析模型进行全局粗优化,以确定变压器的关键设计参数;在此基础上,通过建立损耗和温升的参数化有限元模型,进行绕组参数和散热条件的精细优化,以提升优化的精度和效果。实验结果表明,本文所提出的优化设计方法显著提高了优化效率,在多目标优化过程中,绕组损耗降低了15%,损耗和温升的求解误差降低了40%以上。最终设计的中压高频变压器样机功率密度达到11.2kW/L,绝缘裕量比国标要求提高了15%,满载效率达到99.6%,最大温升低于75℃。该变压器样机在实验室的10kV/2MW固态变压器系统中实现了稳定运行,验证了其设计的可行性和有效性。

(4) 中压高频变压器样机的制备与测试

本文基于所提出的绝缘柔化结构和综合优化设计方法,制备了一台10kV/100kW中压高频变压器样机,并对其关键性能进行了全面的测试评估。在样机的制备过程中,本文总结了中压高频变压器的绝缘制成工艺流程和检验方法,提炼了制备工艺的关键控制要素。在样机的测试中,通过对其电、磁、热等关键性能指标的测试评估,验证了本文所设计的绝缘结构和优化方法的有效性。测试结果表明,所制备的样机可以实现42kV工频耐压和85kV冲击耐受能力,并且在13kV下无局部放电发生。相比传统的中压变压器,所设计样机表现出了更高的绝缘裕量和效率,证明了本文研究成果在实际应用中的潜力。

 

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize

# 电应力计算函数
def electric_stress(voltage, distance):
    return voltage / distance

# 优化目标函数
def objective(params):
    voltage, distance = params
    stress = electric_stress(voltage, distance)
    return stress  # 目标是最小化应力

# 约束条件
def constraint_voltage(params):
    voltage, _ = params
    return voltage - 10  # 电压必须大于10kV

def constraint_distance(params):
    _, distance = params
    return distance - 0.1  # 距离必须大于0.1m

# 参数初始化
initial_params = [15, 0.5]  # 初始电压为15kV,距离为0.5m

# 约束列表
constraints = ({'type': 'ineq', 'fun': constraint_voltage},
               {'type': 'ineq', 'fun': constraint_distance})

# 使用最小化函数进行优化
result = minimize(objective, initial_params, constraints=constraints, method='SLSQP')

# 输出优化结果
optimized_voltage, optimized_distance = result.x
print(f"优化后的电压: {optimized_voltage:.2f} kV")
print(f"优化后的距离: {optimized_distance:.2f} m")

# 绘制电应力分布图
distances = np.linspace(0.1, 1.0, 100)
stresses = electric_stress(optimized_voltage, distances)

plt.plot(distances, stresses)
plt.xlabel('Distance (m)')
plt.ylabel('Electric Stress (kV/m)')
plt.title('Electric Stress Distribution')
plt.grid(True)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值