✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 不同蠕滑-牵引力模型下的摩擦热特性对比研究
为了系统揭示轮轨接触斑内的摩擦热特性,本文详细对比了Carter、Vermeulen-Johnson (V-J) 和 Haines三种蠕滑-牵引力模型下的摩擦热特性。研究从接触斑的几何特性、蠕滑率、切应力、正应力等方面进行了深入分析。通过对比三种模型的表现,发现Haines模型在几何结构和热物理特性上表现出更高的合理性,而Carter和V-J模型的性能有所差异,尤其是V-J模型的滑动区域面积更大,这导致其温升较高。
具体来说,在相同牵引力和垂向载荷条件下,V-J模型表现出较大的滑动区域面积,而Carter和Haines模型的滑动区域面积则较为接近。随着牵引力与法向载荷的比值增大,滑动区域面积也呈现显著增长的趋势。在蠕滑率方面,Carter模型的平均蠕滑率值最高,Haines模型居中,而V-J模型的蠕滑率最低。当牵引力与法向载荷比值接近1时,Haines模型的平均蠕滑率接近于Carter模型的结果。此外,研究还发现摩擦热功率在三种模型中均随着牵引力比值的增大而增加,其中Carter和Haines模型的摩擦热功率与轴重有关,而V-J模型的摩擦热功率与轴重无关。
(2) 小区域数值方法在轮轨接触斑传热与热应力计算中的应用
在轮轨接触问题中,为了提高数值分析的精度和计算效率,本文提出了一种小区域计算方法,并对该方法的精度和效率进行了详细的研究。小区域方法的核心在于确定小区域与大区域分离边界上的边界条件。通过对内部节点热通量的插值来确定边界条件,本文能够有效地满足能量守恒的原则,并获得较高精度的解。为了验证该方法的可行性,本文开发了基于适体坐标系下的有限容积积分法程序,并用一具有解析解的算例对其进行了验证。
在对侧面作用移动热源柱体的传热问题进行数值分析时,本文采用了小区域与大区域两种计算方式。研究表明,对于所选择的计算实例,整体区域的计算网格数是小区域计算网格数的15倍,而计算时间却是小区域计算方法的50倍。通过小区域计算方法,不仅显著节省了计算时间,同时还能保持较高的计算精度,这使得该方法在处理轮轨接触斑摩擦热问题时具有明显的优势。
(3) 接触斑摩擦热传输与热应力特性分析
在使用上述小区域计算方法的基础上,本文详细分析了不同蠕滑-牵引力模型条件下接触斑摩擦热的传输随时间的变化规律。研究结果显示,不同的蠕滑-牵引力模型会导致不同的温度分布和温度梯度。通过对比Carter、V-J和Haines三种模型的计算结果发现,Carter模型下的温度最高,V-J模型的温度最低。同样,Carter模型的温度梯度也最大,尤其是在移动速度较高的条件下,这会导致显著的热应力效应。
研究发现,在动车组的速度不超过360 km/h时(轴重为15吨),如果采用Haines模型进行分析,接触斑的最高温升可以被控制在110°C以内。同时,接触斑的温度梯度呈现出显著的变化,特别是在牵引力中位水平区域,接触斑移动引起的温度变化速率可达到10^5°C/s,温度梯度的峰值也可以达到10^5°C/m。此外,接触斑表面横向温度梯度可以达到10^4°C/m,而沿着车轮中心方向的温度梯度则可达到10^6°C/s。
本文进一步建立了接触斑的热应力模型,并基于温度场的有限容积积分法,开发了适体坐标系下的热应力求解程序。在对Haines模型进行的热应力分析中,本文考虑了仅受机械载荷、仅受热负载以及机械与热负载共同作用的三种情况。研究结果表明,接触区域存在较大的热应力,其值可达到200 MPa,且这些热应力主要分布在接触斑的表面和次表面。随着深度增加,热应力逐渐减小。此外,车轮表面在脱离接触后仍然存在残余热应力,这种残余应力形成了持久的应力场,对车轮的疲劳寿命有显著影响。
在等效应力方面,本文采用了von Mises应力作为等效应力的度量标准,结果表明热应力在接触斑表面上形成的等效应力相对较小。然而,当机械应力和热应力共同作用时,接触表面的等效应力显著增加,最大增幅达到500 MPa。热应力的存在不仅削弱了最高机械应力的等效应力,还显著增加了接触表面大部分区域的等效应力,这主要是由于接触斑沿移动方向存在的温度梯度所引起。因此,即使温度水平较低,热应力的作用仍然不容低估,合理地减少温度梯度对于降低接触斑的等效应力具有重要的工程意义。
(4) 热应力与热变形的交互作用研究
为了进一步理解轮轨接触中的热应力和热变形之间的关系,本文还对接触斑内的热应力和热变形进行了联合分析。研究发现,在接触区域中,由于摩擦热引起的热应力会显著改变材料的变形行为。特别是在轮轨接触的表面和次表面区域,热应力会导致明显的材料膨胀,而这种膨胀效应在接触结束后并不会立刻消失,形成了残余的热变形。这种热变形会累积到接触表面,导致材料疲劳寿命的显著下降。
为了减小热应力和热变形的影响,本文建议通过优化材料的导热性能和轮轨的几何形状来减少热积累,从而降低接触斑的温度梯度。此外,采用合适的冷却策略,如在接触区域喷洒冷却液,或者通过优化车轮的通风结构,都可以有效减小热应力的影响,进而延长轮轨的使用寿命。
# 热应力与热传输的数值计算部分
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
class ThermalStressModel:
def __init__(self, initial_temp, boundary_temp, thermal_diffusivity):
self.initial_temp = initial_temp
self.boundary_temp = boundary_temp
self.thermal_diffusivity = thermal_diffusivity
def heat_transfer(self, t, y):
# 热传递的导数表示
dydt = np.zeros_like(y)
dydt[1:-1] = self.thermal_diffusivity * (y[2:] - 2 * y[1:-1] + y[:-2])
# 边界条件
dydt[0] = self.boundary_temp - y[0]
dydt[-1] = self.boundary_temp - y[-1]
return dydt
def solve_heat_equation(self, length, time_span):
# 初始化温度场
y0 = np.full(length, self.initial_temp)
# 求解热传导方程
sol = solve_ivp(self.heat_transfer, time_span, y0, method='RK45', t_eval=np.linspace(*time_span, 300))
return sol
def plot_temperature_distribution(self, sol):
# 温度分布的可视化
plt.figure(figsize=(10, 6))
for i in range(0, len(sol.t), 50):
plt.plot(sol.y[:, i], label=f'Time {sol.t[i]:.2f}s')
plt.xlabel('Position')
plt.ylabel('Temperature (C)')
plt.title('Temperature Distribution Over Time')
plt.legend()
plt.show()
# 创建热应力模型实例
thermal_model = ThermalStressModel(initial_temp=20, boundary_temp=100, thermal_diffusivity=0.01)
# 求解热传递方程并可视化
solution = thermal_model.solve_heat_equation(length=100, time_span=(0, 10))
thermal_model.plot_temperature_distribution(solution)