线控制动系统轮缸压力控制与智能驾驶主动制动研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 线控制动系统压力估算与控制
线控制动系统的核心在于能够快速、准确地响应智能汽车的制动指令,实现制动力的精确调节。为了实现这一目标,本研究首先基于线控制动系统的动态特性,建立了基于PV特性的回路压力和轮缸压力估算算法。具体来说,研究团队对有刷直流电机、回油泵、蓄能器、单向阀及电磁阀等关键元件的数学模型进行了详细建模,计算了通过单向阀、隔离阀及回油泵流经回路的制动液流量。通过分析液压回路中进液阀的开度,确定了回路的PV特性,进而估算出回路压力。这一估算值作为输入,结合伯努利方程,计算了通过单向阀、进液阀和出液阀流经轮缸的制动液流量,基于轮缸的PV特性,最终实现了轮缸压力的精确估算。这种基于PV特性的压力估算方法不仅提高了压力估算的准确性,还为后续的闭环控制提供了可靠的数据支持,确保了线控制动系统在各种工况下的稳定性和可靠性。

(2) e Booster和ESC协同控制算法
为了实现线控制动系统的精确控制,本研究开发了e Booster和ESC协同调节轮缸压力的控制算法。首先,研究团队建立了三相永磁同步电机、两电平三相电压源逆变器、行星减速器及滚珠丝杠等关键元件的数学模型,创建了速度外环控制和电流内环控制的双闭环永磁同步电机转速控制算法。通过设计基于压力环和位置环的目标转速计算方法,实现了e Booster作为执行器控制回路压力的控制算法。该算法能够根据目标压力和当前位置,实时调整电机转速,从而精确控制回路压力。同时,研究团队还根据电磁阀及回油泵特性和回路压力估算结果,开发了ESC作为执行器控制回路压力的控制算法。通过结合轮缸压力的估算结果反馈,对执行元件进行有效的闭环控制,实现了轮缸压力的精确调节。这种协同控制策略不仅提高了系统的响应速度,还增强了系统的鲁棒性和稳定性,确保了在各种工况下都能实现精确的制动力控制。

(3) 车辆动力学特性模型与关键状态参数估算
为了制定有效的主动制动系统控制策略,本研究建立了车辆动力学特性模型,并提出了面向工程应用的整车质量、路面附着及路面坡度等关键状态参数的估算算法。首先,研究团队利用纵向加速度信号和Kalman滤波技术,实现了道路坡度的实时估计。通过Kalman滤波器,可以有效地滤除噪声,提高坡度估计的准确性。其次,研究团队根据驱动力、纵向加速度、车速及估算压力,筛选合适的行驶工况,基于递归最小二乘法实现了质量的在线估计。这一方法能够在车辆行驶过程中实时更新整车质量,为控制策略的制定提供准确的数据支持。此外,研究团队还基于扩张状态观测器,对附着系数进行了识别,并利用典型路面m-s曲线,对路面峰值附着系数进行了估算。这些关键状态参数的精确估算,为主动制动系统控制策略的制定奠定了坚实的基础,确保了系统在各种工况下的有效性和可靠性。

(4) 主动制动系统控制策略与目标制动力融合控制算法
为了实现智能汽车动态驾驶制动指令的实时、准确执行,本研究制定了主动制动系统控制策略,并构建了目标制动力融合控制算法。首先,根据整车质量及路面坡度的辨识结果,设计了前馈控制器,结合车辆实际减速度,设计了模糊PI反馈控制器。通过前馈和反馈控制器的协同作用,实现了对车辆制动力的精确控制,确保了对目标减速度指令的准确跟随。为了实现对目标速度指令的跟随,研究团队提出了通过控制车辆减速度间接控制车速的方法。具体来说,根据目标车速和实际车速,采用模糊算法计算目标减速度,结合减速度反馈,设计了模糊PI反馈控制器,控制车辆制动力,实现对目标速度指令的准确跟随。此外,研究团队还设计了驻车控制协调模块,通过计算各车轮的目标制动力,控制制动系统轮缸压力,确保车辆平稳驻车。为了提高系统的可靠性和安全性,研究团队还设计了硬件故障检测和处理流程,能够在制动系统出现故障时及时采取措施,避免潜在的安全风险。这些控制策略和算法的综合应用,确保了主动制动系统在各种工况下的高效、可靠运行,满足了智能汽车的动态驾驶需求。

(5) 联合仿真平台与实车试验验证
为了验证所提出的线控制动系统压力估算及控制效果,本研究搭建了Car Sim、Matlab/Simulink与AMESim联合仿真平台,对压力估算及控制效果进行了离线仿真验证。仿真结果表明,所提出的压力估算算法和控制策略在各种工况下均能实现准确的压力估算和精确的制动力控制。为了进一步验证控制算法的实际效果,研究团队基于拥有自主知识产权的e Booster及ESC硬件,进行了实车试验。试验内容包括BAS(制动辅助系统)、HBC(坡道起步辅助系统)、AEB(自动紧急制动系统)、HDC(陡坡缓降控制系统)及AVH(自动驻车系统)等典型工况。试验结果表明,所提出的主动制动系统能够很好地控制车辆的行车制动和驻车制动,满足智能汽车的动态驾驶减速度控制需求。特别是BAS系统通过了欧盟ECE R13H法规的第三方认证,证明了系统的可靠性和有效性。

 

import numpy as np
import matplotlib.pyplot as plt
from filterpy.kalman import KalmanFilter
from filterpy.common import Q_discrete_white_noise

class RoadSlopeEstimator:
    def __init__(self, dt, std_acc, x0, P, Q, R):
        """
        初始化Kalman滤波器。
        
        参数:
        dt (float): 时间步长
        std_acc (float): 加速度的标准差
        x0 (np.array): 初始状态向量 [坡度, 坡度变化率]
        P (np.array): 初始协方差矩阵
        Q (np.array): 过程噪声协方差矩阵
        R (np.array): 测量噪声协方差矩阵
        """
        self.dt = dt
        self.f = KalmanFilter(dim_x=2, dim_z=1)
        self.f.x = x0  # 初始状态向量
        self.f.F = np.array([[1, dt], [0, 1]])  # 状态转移矩阵
        self.f.H = np.array([[1, 0]])  # 观测矩阵
        self.f.P = P  # 初始协方差矩阵
        self.f.Q = Q  # 过程噪声协方差矩阵
        self.f.R = R  # 测量噪声协方差矩阵

    def update(self, z):
        """
        更新Kalman滤波器状态。
        
        参数:
        z (float): 当前测量值(纵向加速度)
        """
        self.f.predict()
        self.f.update(z)

    def get_slope(self):
        """
        获取当前估计的坡度。
        
        返回:
        float: 当前估计的坡度
        """
        return self.f.x[0]

# 示例数据
dt = 0.1  # 时间步长
std_acc = 0.1  # 加速度的标准差
x0 = np.array([0, 0])  # 初始状态向量 [坡度, 坡度变化率]
P = np.diag([1.0, 1.0])  # 初始协方差矩阵
Q = Q_discrete_white_noise(dim=2, dt=dt, var=std_acc**2)  # 过程噪声协方差矩阵
R = np.array([[1.0]])  # 测量噪声协方差矩阵

estimator = RoadSlopeEstimator(dt, std_acc, x0, P, Q, R)

# 生成模拟的纵向加速度数据
true_slopes = np.sin(np.linspace(0, 2 * np.pi, 100))
measurements = true_slopes + np.random.normal(scale=0.1, size=true_slopes.shape)

estimated_slopes = []
for measurement in measurements:
    estimator.update(measurement)
    estimated_slopes.append(estimator.get_slope())

# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(true_slopes, label='True Slope')
plt.plot(estimated_slopes, label='Estimated Slope')
plt.legend()
plt.xlabel('Time Step')
plt.ylabel('Slope')
plt.title('Road Slope Estimation Using Kalman Filter')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值