基于自回归模型的胎压监测滚动半径与共振频率状态参数估计【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


1. 基于刚性环轮胎模型的轮胎滚动半径和共振频率监测算法及胎压监测方法

本文提出基于刚性环轮胎模型的轮胎滚动半径和共振频率监测算法及胎压监测方法。根据有效路面模型和轮胎的工作条件,分析了滚动轮胎所受的激励,利用刚性环轮胎模型分析了轮胎的振动特性以及基于轮胎滚动半径分析和共振频率分析两种胎压监测算法的基本原理。在两种胎压监测方法实现方式上,分别采用两轮比较法和自回归模型方法。为提高算法的准确性和稳定性,对影响系统性能的因素进行了全面分析,包括轮胎刚度、算法实现和工况三个角度的影响因素。最后,建立了间接式胎压监测算法的架构。

  • 轮胎滚动半径分析

    • 基本原理:轮胎滚动半径是指轮胎在滚动过程中,轮胎中心到地面的距离。当轮胎充气不足时,轮胎的滚动半径会减小,导致车轮转速增加。通过监测车轮转速的变化,可以判断轮胎的充气状态。
    • 实现方法:采用两轮比较法,通过比较同一轴上的两个车轮的转速差异,判断是否有轮胎充气不足。如果某一侧的车轮转速明显高于另一侧,则说明该侧的轮胎可能充气不足。
    • 影响因素:轮胎刚度、路面条件、车辆负载等因素都会影响车轮转速,因此需要对这些因素进行补偿,以提高算法的准确性。
  • 共振频率分析

    • 基本原理:轮胎在滚动过程中会产生共振现象,其共振频率与轮胎的充气状态有关。当轮胎充气不足时,共振频率会发生变化。通过监测轮胎的共振频率,可以判断轮胎的充气状态。
    • 实现方法:采用自回归模型方法,通过分析轮速信号中的频率成分,提取轮胎的共振频率。如果共振频率偏离正常范围,则说明轮胎可能充气不足。
    • 影响因素:轮胎类型、路面条件、车辆速度等因素都会影响轮胎的共振频率,因此需要对这些因素进行补偿,以提高算法的稳定性。
  • 算法架构

    • 数据采集:通过轮速传感器采集车轮转速数据,通过加速度传感器采集车辆加速度数据。
    • 数据处理:对采集到的数据进行预处理,包括滤波、插值和误差校正等,以消除噪声和误差。
    • 特征提取:从处理后的数据中提取轮胎滚动半径和共振频率等特征。
    • 状态判断:根据提取的特征,判断轮胎的充气状态。如果发现轮胎充气不足,触发报警。
2. 轮速传感器信号处理方法

本文根据胎压监测算法需求,建立了轮速传感器信号处理方法。通过传感器误差识别、轮速修正、插值和滤波处理过程,得到满足算法使用要求的轮速信号,并提取不同频域的轮速成分。对于滚动半径分析方法,通过脉冲数累加的方式得到一次计算所需的脉冲数据。利用卡尔曼滤波方法估计车轮角加速度。

  • 传感器误差识别

    • 误差来源:轮速传感器可能存在安装误差、信号传输误差和传感器本身误差等。
    • 误差识别:通过对比多个传感器的数据,识别出异常数据。如果某个传感器的数据与其他传感器的数据偏差较大,则认为该传感器存在误差。
    • 误差校正:对识别出的异常数据进行校正,确保数据的准确性。
  • 轮速修正

    • 修正方法:通过卡尔曼滤波方法对轮速数据进行修正,消除噪声和误差。卡尔曼滤波是一种递推滤波方法,能够实时更新状态估计,具有较高的精度和稳定性。
    • 修正步骤:首先,对原始轮速数据进行预处理,包括滤波和插值。然后,使用卡尔曼滤波方法对处理后的数据进行修正,得到准确的轮速数据。
  • 插值和滤波处理

    • 插值处理:通过插值方法填补数据中的缺失值,确保数据的连续性。常用的插值方法包括线性插值、多项式插值和样条插值等。
    • 滤波处理:通过滤波方法消除数据中的噪声,提高数据的信噪比。常用的滤波方法包括低通滤波、高通滤波和带通滤波等。
  • 特征提取

    • 脉冲数累加:对于滚动半径分析方法,通过脉冲数累加的方式得到一次计算所需的脉冲数据。脉冲数累加可以消除短时间内的波动,提高数据的稳定性。
    • 频率成分提取:通过傅里叶变换等方法,提取轮速信号中的频率成分。频率成分可以用于共振频率分析,判断轮胎的充气状态。
3. 影响胎压监测的车辆状态参数及道路条件的识别方法和轮胎工作温度估算模型

本文提出了影响胎压监测的车辆状态参数及道路条件的识别方法和轮胎工作温度估算模型。根据车辆是否安装加速度传感器,分别建立两种整车质量和道路坡度估计算法。提出基于轮胎纵滑刚度的前轮载荷估计方法,并采用多算法交互策略估计前轮载荷,最终在整车质量估计的基础上得到四轮载荷。提出两类道路条件识别方法,一种是根据车轮角加速度信号估计路面的不平度等级,另一种是根据轮速信号中的振动信息识别路面不平度和雪路面。为估计轮胎的实时温度,对已有的轮胎物理温度模型进行改进和简化处理,建立通用的传热模型,降低模型复杂度,提高温度模型对于工程应用的适用性。

  • 整车质量和道路坡度估计

    • 算法一:基于加速度传感器的估计算法。通过分析车辆加速度和车轮转速,估计整车质量和道路坡度。该算法适用于安装有加速度传感器的车辆。
    • 算法二:基于轮速信号的估计算法。通过分析轮速信号的变化,估计整车质量和道路坡度。该算法适用于未安装加速度传感器的车辆。
    • 交互策略:采用多算法交互策略,综合两种估计算法的结果,提高估计的准确性。
  • 前轮载荷估计

    • 基本原理:基于轮胎纵滑刚度的前轮载荷估计方法。轮胎的纵滑刚度与前轮载荷有关,通过分析轮胎的纵滑刚度,可以估计前轮载荷。
    • 实现方法:通过分析轮速信号和车轮角加速度信号,提取轮胎的纵滑刚度。然后,根据纵滑刚度与前轮载荷的关系,估计前轮载荷。
    • 多算法交互:采用多算法交互策略,综合多种估计算法的结果,提高估计的准确性。
  • 道路条件识别

    • 方法一:基于车轮角加速度信号的道路不平度等级估计。通过分析车轮角加速度信号,估计路面的不平度等级。该方法适用于识别不同类型的路面。
    • 方法二:基于轮速信号的振动信息识别。通过分析轮速信号中的振动信息,识别路面不平度和雪路面。该方法适用于识别特殊路面条件。
  • 轮胎工作温度估算

    • 基本原理:轮胎的温度与其工作状态有关,通过分析轮胎的工作状态,可以估计轮胎的温度。
    • 传热模型:对已有的轮胎物理温度模型进行改进和简化处理,建立通用的传热模型。该模型能够准确估计轮胎的实时温度,同时降低模型的复杂度,提高温度模型对于工程应用的适用性。
    • 实现方法:通过分析轮速信号、车轮角加速度信号和车辆加速度信号,提取轮胎的工作状态参数。然后,根据传热模型,估计轮胎的实时温度。

 

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import butter, lfilter, freqz

# 轮速传感器信号处理
def preprocess_wheel_speed(data, fs, cutoff):
    # 低通滤波器设计
    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = butter(5, normal_cutoff, btype='low', analog=False)
    
    # 滤波处理
    y = lfilter(b, a, data)
    
    # 插值处理
    x = np.arange(len(y))
    x_new = np.linspace(0, len(y) - 1, num=1000, endpoint=True)
    y_new = np.interp(x_new, x, y)
    
    return y_new

# 特征提取
def extract_features(data):
    # 脉冲数累加
    pulse_count = np.sum(data)
    
    # 频率成分提取
    fft_result = np.fft.fft(data)
    freqs = np.fft.fftfreq(len(data))
    
    return pulse_count, freqs, fft_result

# 状态判断
def judge_tire_pressure(pulse_count, freqs, fft_result, threshold):
    # 滚动半径分析
    if pulse_count > threshold:
        print("Tire pressure is low based on rolling radius analysis.")
    
    # 共振频率分析
    dominant_freq = freqs[np.argmax(np.abs(fft_result))]
    if dominant_freq < 0.5:
        print("Tire pressure is low based on resonance frequency analysis.")

# 模拟轮速传感器数据
fs = 1000  # 采样频率 (Hz)
t = np.linspace(0, 1, fs, endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.random.randn(len(t))  # 模拟轮速信号

# 信号预处理
filtered_data = preprocess_wheel_speed(data, fs, 10)

# 特征提取
pulse_count, freqs, fft_result = extract_features(filtered_data)

# 状态判断
judge_tire_pressure(pulse_count, freqs, fft_result, 1000)

# 绘制结果
plt.figure(figsize=(10, 5))
plt.subplot(2, 1, 1)
plt.plot(t, data, label='Original Data')
plt.plot(t, filtered_data, label='Filtered Data')
plt.xlabel('Time (s)')
plt.ylabel('Wheel Speed (rpm)')
plt.legend()
plt.title('Wheel Speed Signal Preprocessing')

plt.subplot(2, 1, 2)
plt.plot(freqs, np.abs(fft_result))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.title('Frequency Components of Wheel Speed Signal')
plt.tight_layout()
plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值