✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅论文数据下载:工业工程毕业论文【数据集】
✅题目与创新点推荐:工业工业毕业论文【题目推荐】
(1)实地调研与生产线现状分析
为了对KD公司开关柜柜体装配生产线进行优化研究,首先进行了实地调研,运用程序分析法和秒表测时法等工业工程方法对各个装配工位的操作内容进行了观测和记录。调研发现,该生产线以手工作业为主,导致作业效率低下,且存在多个不合理的作业现象。通过对操作内容的详细记录和分析,识别出生产线中的关键瓶颈环节和改进点,为后续的仿真建模和优化提供了基础数据和改进方向
。
(2)Flexsim仿真建模与生产线平衡率分析
利用Flexsim仿真软件对现行装配生产线进行了建模和仿真。模型运行结果显示,现行装配生产线的平衡率只有62.48%,主要原因在于4号工位存在较多不合理的作业现象。通过对4号工位的进一步分析,并且根据动作经济原则对4号工位的作业内容和物料放置等进行了优化改善,使得改善后的装配生产线平衡率提高到了73.08%
。这一步骤不仅验证了仿真软件的有效性,也为生产线的优化提供了具体的改进措施。
(3)生产线平衡问题的整数规划模型与优化方案验证
运用0-1整数规划理论,建立起了两类生产线平衡问题的整数规划模型,并运用Lingo软件计算最优解。将获得的两类最优解再次带入Flexsim软件分别进行仿真建模,以验证优化方案的改善效果。模型运行的结果表明第I、II类生产线平衡改善后的生产线平衡率分别为94%和81.54%,平滑性指数分别为3.20和9.13。可以看出装配生产线的平衡效果得到了显著提升
# 基于FLEXSIM和整数规划的生产线优化代码示例
import numpy as np
import random
# 定义工序类,用于模拟生产线中的各个工序
class Operation:
def __init__(self, name, time):
self.name = name
self.time = time
self.queue = []
def process(self, product):
processing_time = random.uniform(self.time * 0.9, self.time * 1.1)
print(f"Processing {product} at {self.name} for {processing_time:.2f} seconds.")
return processing_time
# 定义生产线类,用于模拟整条生产线
class ProductionLine:
def __init__(self, operations):
self.operations = operations
def run(self, products):
total_time = 0
for product in products:
for operation in self.operations:
processing_time = operation.process(product)
total_time += processing_time
print(f"Total production time: {total_time:.2f} seconds.")
return total_time
# 基于0-1整数规划对生产线进行优化
class ProductionOptimizer:
def __init__(self, line, max_iterations):
self.line = line
self.max_iterations = max_iterations
self.best_time = float('inf')
self.best_configuration = None
def optimize(self):
for iteration in range(self.max_iterations):
# 随机调整生产线的工序顺序,模拟优化过程
random.shuffle(self.line.operations)
total_time = self.line.run([f"Product-{i}" for i in range(5)])
if total_time < self.best_time:
self.best_time = total_time
self.best_configuration = self.line.operations.copy()
print(f"Iteration {iteration}: New best time found: {total_time:.2f} seconds.")
return self.best_configuration, self.best_time
# 示例运行优化过程
if __name__ == "__main__":
# 定义生产线中的工序
operation1 = Operation("Cutting", 10)
operation2 = Operation("Assembling", 15)
operation3 = Operation("Painting", 12)
operation4 = Operation("Inspection", 8)
# 初始化生产线
production_line = ProductionLine([operation1, operation2, operation3, operation4])
# 初始化优化器并运行优化
optimizer = ProductionOptimizer(production_line, max_iterations=10)
best_config, best_time = optimizer.optimize()
print("Best configuration found:")
for op in best_config:
print(op.name)
print(f"Best total production time: {best_time:.2f} seconds.")