论文阅读:Learnable pooling with Context Gating for video classification

这篇论文是2016年Google Cloud & YouTube-8M Video Understanding Challenge比赛中冠军得主的论文。
文章的两点贡献:

  1. 融合了VLAD, bag-of-visual-words和Fisher Vector三种编码方式,并且每个都做了一定程度的调整。其中,VLAD改为NetRVLAD, bag-of-visual-words改为Soft-DBoW, Fisher Vector改为NetFV。
  2. 提出了一个新的非线性的单元 Context Gating (CG)。CG可以捕获特征之间或者标签之间的依赖性。具体的还要再看一下再补充。

论文框架:
这里写图片描述

实验结果:
这里写图片描述

代码: https://github.com/antoine77340/Youtube-8M-WILLOW
工具:https://github.com/antoine77340/LOUPE.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值