树莓派5-mediapipe库安装

一、先确保有必要的系统依赖库

sudo apt-get update

sudo apt-get install -y build-essential cmake pkg-config zip unzip python3-dev python3-numpy libavcodec-dev libavformat-dev libswscale-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev

二、直接换镜像源下载

​pip install mediapipe -i  https://pypi.tuna.tsinghua.edu.cn/simple/

三、检测是否安装完成

pip list

### 使用 MediaPipe树莓派上实现手势识别 为了在树莓派上使用 MediaPipe 实现手势识别,可以按照以下方法操作: #### 准备工作 确保安装了必要的依赖并配置好环境。对于树莓派 Zero W 这样的设备,由于其硬件性能有限,在本地直接运行复杂的 AI 模型可能不太现实。因此建议采用轻量级模型或者将计算卸载至更强大的远程服务器。 #### 安装 MediaPipe 和其他依赖项 可以通过 pip 工具来安装 Python 版本的 MediaPipe 以及 OpenCV 等辅助工具: ```bash pip install mediapipe opencv-python ``` #### 编写手势识别代码 下面是一个简单的例子展示如何利用 MediaPipe 的 Hands 解决方案捕捉手部姿态,并将其转换成易于理解的形式输出[^1]。 ```python import cv2 import mediapipe as mp mp_hands = mp.solutions.hands.Hands( static_image_mode=False, max_num_hands=2, # 可调整最大检测数量 min_detection_confidence=0.7) cap = cv2.VideoCapture(0) # 打开摄像头获取视频流 while cap.isOpened(): success, image = cap.read() if not success: break results = mp_hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if results.multi_hand_landmarks is None: continue for hand_landmarks in results.multi_hand_landmarks: print('Hand landmarks:', [(lm.x, lm.y, lm.z) for lm in hand_landmarks.landmark]) cv2.destroyAllWindows() ``` 此段脚本会启动默认摄像机并将每一帧传递给 `Hands` 类实例进行分析;一旦发现有手存在,则打印出手的关键点坐标数据。 考虑到资源受限情况下的优化措施,比如降低分辨率、减少帧率等都可以帮助提高效率。另外也可以考虑只发送感兴趣区域(ROI)的数据而不是整张图片以节省带宽和处理时间。 #### 数据传输与命令执行 当需要实现在不同设备间交互的功能时,如上述 DIY 贫民版 Google Glass 中提到的方式,可借助 WebSocket 或 MQTT 协议完成从边缘端到云端的服务调用过程。这样不仅可以减轻前端压力还能充分利用后台算力优势[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值