本文只讲述nnunetv2的在2D图像的上复现步骤,对于实现细节可以阅读原文和代码!
1. 下载代码与构建环境:
git clone https://github.com/MIC-DKFZ/nnUNet.git # 下载代码
cd nnUNet # 切换目录
conda create -n myenv python=3.9 # 注意nnUNetv2需要python>=3.9
conda activate myenv
pip install nnunetv2
pip install -e . #最后这个点也不能忽略
安装隐藏层(可选,可以不安装),hiddenlayer 使 nnU-net 能够生成网络拓扑图
pip install --upgrade git+https://github.com/FabianIsensee/hiddenlayer.git
2. 数据准备
(1)在nnunet 文件夹下创建DATASET文件夹,并创建 nnUNet_raw、nnUNet_preprocessed 和 nnUNet_trained_models,文件目录如下:
3.设置环境路径
(1)在终端(用户根目录路径)输入:
echo 'export nnUNet_raw="path/nnUNet/DATASET/nnUNet_raw"' >> ~/.bashrc
echo 'export nnUNet_preprocessed="path/nnUNet/DATASET/nnUNet_preprocessed"' >> ~/.bashrc
echo 'export nnUNet_results="path/nnUNet/DATASET/nnUNet_trained_models"' >> ~/.bashrc
注意修改“path”为自己的路径
(2)终端运行代码更新 .bashrc:
source ~/.bashrc
================================= 或者 =================================
可修改文件:“…/nnUNet/nnunetv2/paths.py”
nnUNet_raw = os.environ.get('根目录/nnUNet/DATASET/nnUNet_raw')
nnUNet_preprocessed = os.environ.get('根目录/nnUNet/DATASET/nnUNet_preprocessed')
nnUNet_results = os.environ.get('根目录/nnUNet/DATASET/nnUNet_trained_models')
如遇到如下问题:
nnUNet_raw is not defined and nnU-Net can only be used on data for which preprocessed files " "are already present on your system. nnU-Net cannot be used for experiment planning and preprocessing like " "this. If this is not intended, please read documentation/setting_up_paths.md for information on how to set " "this up properly.
…
则修改代码如下:
nnUNet_raw="根目录/nnUNet/DATASET/nnUNet_raw"
nnUNet_preprocessed="根目录/nnUNet/DATASET/nnUNet_preprocessed"
nnUNet_results="根目录/nnUNet/DATASET/nnUNet_trained_models"
4. 转换数据集
(1)将自己的数据集创建为如下结构:
input: 图像数据
output:标签数据
(2)修改文件“…/nnUNet/nnunetv2/dataset_conversion/Dataset120_RoadSegmentation.py”:
import multiprocessing
import shutil
from multiprocessing import Pool
from batchgenerators.utilities.file_and_folder_operations import *
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json
from nnunetv2.paths import nnUNet_raw
from skimage import io
from acvl_utils.morphology.morphology_helper import generic_filter_components
from scipy.ndimage import binary_fill_holes
def load_and_covnert_case(input_image: str, input_seg: str, output_image: str, output_seg: str,
min_component_size: int = 50):
seg = io.imread(input_seg)
# seg[seg == 255] = 1
seg[seg == 18] = 1
seg[seg == 54] = 2
seg[seg == 255] = 0
image = io.imread(input_image)
image = image.sum(2)
mask = image == (3 * 255)
# the dataset has large white areas in which road segmentations can exist but no image information is available.
# Remove the road label in these areas
mask = generic_filter_components(mask, filter_fn=lambda ids, sizes: [i for j, i in enumerate(ids) if
sizes[j] > min_component_size])
mask = binary_fill_holes(mask)
seg[mask] = 0
io.imsave(output_seg, seg, check_contrast=False)
shutil.copy(input_image, output_image)
if __name__ == "__main__":
# extracted archive from https://www.kaggle.com/datasets/insaff/massachusetts-roads-dataset?resource=download
# source = '/media/fabian/data/raw_datasets/Massachussetts_road_seg/road_segmentation_ideal'
source = '../nnunet_data'
nnUNet_raw = '../nnUNet/DATASET/nnUNet_raw/'
# dataset_name = 'Dataset120_RoadSegmentation'
dataset_name = 'Dataset001_XXX'
imagestr = join(nnUNet_raw, dataset_name, 'imagesTr')
imagests = join(nnUNet_raw, dataset_name, 'imagesTs')
labelstr = join(nnUNet_raw, dataset_name, 'labelsTr')
labelsts = join(nnUNet_raw, dataset_name, 'labelsTs')
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
maybe_mkdir_p(labelsts)
train_source = join(source, 'training')
test_source = join(source, 'testing')
with multiprocessing.get_context("spawn").Pool(8) as p:
# not all training images have a segmentation
valid_ids = subfiles(join(train_source, 'output'), join=False, suffix='png')
num_train = len(valid_ids)
r = []
for v in valid_ids:
r.append(
p.starmap_async(
load_and_covnert_case,
((
join(train_source, 'input', v),
join(train_source, 'output', v),
join(imagestr, v[:-4] + '_0000.png'),
join(labelstr, v),
50
),)
)
)
# test set
valid_ids = subfiles(join(test_source, 'output'), join=False, suffix='png')
for v in valid_ids:
r.append(
p.starmap_async(
load_and_covnert_case,
((
join(test_source, 'input', v),
join(test_source, 'output', v),
join(imagests, v[:-4] + '_0000.png'),
join(labelsts, v),
50
),)
)
)
_ = [i.get() for i in r]
# generate_dataset_json(join(nnUNet_raw, dataset_name), {0: 'R', 1: 'G', 2: 'B'}, {'background': 0, 'road': 1},
# num_train, '.png', dataset_name=dataset_name)
generate_dataset_json(join(nnUNet_raw, dataset_name), {0: 'R', 1: 'G', 2: 'B'}, {'background': 0, 'class1': 1, 'class2': 2},
num_train, '.png', dataset_name=dataset_name)
以下部分根据自己的任务修改:
seg[seg == 18] = 1
seg[seg == 54] = 2
seg[seg == 255] = 0
source = '../nnunet_data'
nnUNet_raw = '../nnUNet/DATASET/nnUNet_raw/'
dataset_name = 'Dataset001_XXX'
(3)运行Dataset120_RoadSegmentation.py文件,即可在"…/nnUNet/DATASET/nnUNet_raw/Dataset001_XXX"下生成对应的训练格式和dataset.json文件,如下图所示:
5. 数据集预处理
此步骤对数据进行:裁剪crop,重采样resample以及标准化normalization
nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity
注: DATASET_ID是001 (Dataset001_XXX)
会在 nnUNet_preprocessed 文件夹中创建一个以数据集命名的新子文件夹。命令完成后,将出现一个 dataset_fingerprint.json 文件以及一个 nnUNetPlans.json 文件。还有一些子文件夹包含 UNet 配置的预处理数据。
5.训练命令
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 0
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 1
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 2
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 3
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 4
‘CUDA_VISIBLE_DEVICES=1’ 表示指定GPU训练
‘2d’ 是选用2D Unet模型
‘1’ 表示任务编码,Dataset001_XXX
‘0,1,2,3,4’ 代表五折交叉验证
若运行中断,代码会50个epoch保存一下checkpoint ,若中断使用:原来指令后面加–c可以接着运行,用运行第0折时中断为例:
CUDA_VISIBLE_DEVICES=1 nnUNetv2_train 1 2d 0 --c
6. 推理结果
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_NAME_OR_ID -c CONFIGURATION --save_probabilities
# nnUNetv2_predict -h 查看参数解析
INPUT_FOLDER:测试数据地址
OUTPUT_FOLDER:分割结果存放地址
DATASET_NAME_OR_ID:数据集ID
CONFIGURATION:使用的什么架构,2d or 3d_fullres or 3d_cascade_fullres等,这里训练用的什么就写什么
save_probabilities:将预测概率与需要大量磁盘空间的预测分段掩码一起保存。
默认情况下,推理将通过交叉验证的所有 5 个折叠作为一个整体来完成(根据5个模型得到一个结果)。我们强烈建议您使用全部 5 折。因此,在运行推理之前必须训练所有 5 个折叠。
要想每个模型分开得到结果,就加参数-f all,或者只为某一折出结果,就加参数-f 2(得到 fold 2 的结果)
以fold 2 举例:
nnUNetv2_predict -i input -o output -d 001 -c 3d_lowres -f 2
注意: 如需要在其他的数据集测试需要进行图像预处理工作,具体参考步骤 4, 5.
7. 获得最佳配置
nnUNetv2_find_best_configuration DATASET_NAME_OR_ID -c CONFIGURATIONS
DATASET_NAME_OR_ID: 数据集ID,即001—Dataset001
CONFIGURATIONS:2d
以2d为例,任务为001,折数为1(不加折数,默认从五折中找最优的),则命令为:
nnUNetv2_find_best_configuration 001 -c 2d -f 1
则会在路径“~/nnUNet/DATASET/nnUNet_trained_models/Dataset001_XXX" 目录下生成:inference_information.json和inference_instructions.txt文件:
inference_information.json:保存的最佳的推理结果
inference_instructions.txt:保存的推理命令
nnUNetv2_predict -d Dataset001_XXX -i INPUT_FOLDER -o OUTPUT_FOLDER -f 0 1 2 3 4 -tr nnUNetTrainer -c 2d -p nnUNetPlans
8. 对无标签数据进行推理
** 即已经有该数据集训练好的模型,需要对新的图片(无标签)进行推理。**
(1)将图片命名为nnunet需要的格式xxx_0000.png(示例代码如下):
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from pathlib import Path
def rename_images(input_dir):
"""
Rename image files from X.png to X_0000.png format
Args:
input_dir: Directory containing the image files
"""
input_path = Path(input_dir)
# Check if directory exists
if not input_path.exists():
raise RuntimeError(f"Input directory {input_dir} does not exist")
# Get all PNG files
png_files = list(input_path.glob("*.png"))
for file_path in png_files:
# Get original filename without extension
filename = file_path.stem
# Create new filename
new_filename = f"{filename}_0000.png"
new_path = file_path.parent / new_filename
# Rename file
file_path.rename(new_path)
print(f"Renamed {file_path.name} to {new_filename}")
if __name__ == "__main__":
# Specify input directory
input_dir = "your_file_path"
# Process the renaming
rename_images(input_dir)
print("Renaming completed!")
(2)使用 “ 6. 推理结果 ” 的设置进行推理即可。
参考资料:
- https://blog.csdn.net/weixin_45882172/article/details/138216705?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7Ebaidujs_baidulandingword%7ECtr-5-138216705-blog-131539779.235%5Ev43%5Epc_blog_bottom_relevance_base6&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7Ebaidujs_baidulandingword%7ECtr-5-138216705-blog-131539779.235%5Ev43%5Epc_blog_bottom_relevance_base6&utm_relevant_index=10