第4章-28 矩阵转置 (10 分)

第4章-28 矩阵转置 (10 分)

将一个3×3矩阵转置(即行和列互换)。

输入格式:

在一行中输入9个小于100的整数,其间各以一个空格间隔。

输出格式:

输出3行3列的二维数组,每个数据输出占4列。

输入样例:

1 2 3 4 5 6 7 8 9

输出样例:

   1   4   7
   2   5   8
   3   6   9

 

lst = list(map(int,input().split()))
for i in range(0,9,3):
    print('{:4d}'.format(lst[i]),end='')
print('')
for i in range(1,9,3):
    print('{:4d}'.format(lst[i]),end='')
print('')
for i in range(2,9,3):
    print('{:4d}'.format(lst[i]),end='')
print('')

 

### 回答1: 将一个 3x3 矩阵进行转置,即行互换,可以按照以下步骤操作: 1. 将原矩阵的第一行变为转置后矩阵的第一; 2. 将原矩阵的第二行变为转置后矩阵的第二; 3. 将原矩阵的第三行变为转置后矩阵的第三。 举例来说,如果原矩阵为: 1 2 3 4 5 6 7 8 9 转置后的矩阵为: 1 4 7 2 5 8 3 6 9 通过将原矩阵的行和进行互换,我们得到了转置后的矩阵。 ### 回答2: 将一个3×3矩阵转置,就是将它的行和互换,也就是将原矩阵中第一行的元素变成新矩阵的第一元素,第二行的元素变成第二元素,第三行的元素变成第三元素。 例如,有一个3 × 3的矩阵: 1 2 3 4 5 6 7 8 9 将其进行转置,得到的新矩阵为: 1 4 7 2 5 8 3 6 9 转置的操作实际上是将一个m × n的矩阵转换为一个n × m的矩阵,所以,对于任意的m × n矩阵A,其转置可以表示为矩阵B,即B=AT,其中,B的行数和A的数相等,B的数和A的行数相等。 在矩阵运算中,转置是一个很重要的操作,它可以解决很多问题,比如:求一个方阵的对称矩阵、求一个向量的模长等。在深度学习中,为了便于矩阵运算,通常需要将输入数据进行转置,使得输入数据符合神经网络的要求。 ### 回答3: 将一个3×3矩阵进行转置操作,需要首先理解什么是矩阵。矩阵是由数字排成的矩形表格,其中每个数字叫做元素。通常用小写字母加双下标表示,如 $A_{ij}$ 表示矩阵 $A$ 中第 $i$ 行第 $j$ 的元素。转置就是将矩阵的行和互换,变成同样大小的新矩阵。以一个 $3 \times 3$ 的矩阵 $\textbf{A}$ 为例: $$ \textbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{bmatrix} $$ 将该矩阵进行转置操作后,得到新的 $3 \times 3$ 矩阵 $\textbf{A}^T$: $$ \textbf{A}^T = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \\ \end{bmatrix} $$ 可以看到,$\textbf{A}$ 中第一行的元素变成了 $\textbf{A}^T$ 中的第一元素,$\textbf{A}$ 中第二行的元素变成了 $\textbf{A}^T$ 中的第二元素,$\textbf{A}$ 中第三行的元素变成了 $\textbf{A}^T$ 中的第三元素,即它们“被转置了”。转置操作通常在数学、物理、计算机等领域都有广泛应用,如二维图形的旋转、变换矩阵的求解、线性代数中矩阵的求逆等。在数学建模和数据析中,常用转置操作来方便进行矩阵运算、计算矩阵的秩、特征值等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值