切比雪夫(最小区域法)平面拟合算法

37 篇文章 0 订阅
23 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:切比雪夫(最小区域法)平面拟合算法

相关背景和理论
点击前往
主要介绍了应用背景和如何转化成线性规划问题

在这里插入图片描述

平拟合输入和输出要求

输入

  1. 10到631个点,全部采样自平面附近。
  2. 每个点3个坐标,坐标精确到小数点后面20位。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

输出

  1. 平面上一点X0,用三个坐标表示。
  2. 法向A。
  3. 平面度F,所有点到平面距离最大的2倍。

精度要求

  1. X0点平面距离不能超过0.0001mm。
  2. 法向A与标准法向夹角不能超过0.0000001rad。
  3. F与标准平面度误差不能超过0.00001mm。

平面优化标函数

根据认证要求,平面拟合转化成数学表示如下:

平面参数化表示

  1. 平面上1点X0 = (x0, y0, z0)。
  2. 方向单位向量A=(a,b,c)。

点到平面距离

第i个点 pi(xi, yi, zi)。

根据点乘得到距离

d i = ∥ ( p i − X 0 ) ⋅ A ∥ ∥ A ∥ d_i = \frac { \left \| (p_i-X_0)\cdot A \right \|}{\left \| A \right \|} di=A(piX0)A

展开一下:

d i = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) a 2 + b 2 + c 2 d_i = \frac {a(x_i-x_0) + b(y_i-y_0) + c(z_i-z_0)} {\sqrt{a^2+b^2+c^2}} di=a2+b2+c2 a(xix0)+b(yiy0)+c(ziz0)

优化能量方程

能量方程 H = f ( X 0 , A ) = max ⁡ 1 n ∣ d i ∣ H=f(X0, A)=\displaystyle \max_1^n {|d_i|} H=f(X0,A)=1maxndi

X0, A是未知量,拟合平面的过程也可以理解为优化X0, A使得方程H最小。

如何3个参数表示平面

如果直接拿6个参数去做迭代,1是比较麻烦,会出现比较难解的方向,2是平面上的点有很多个,结果不唯一。

当平面法向与Z轴偏差比较小的时候可以使用3个参数来表示。

在这里插入图片描述

如上图,绿线为Z轴,橙色线为XOY平面。

由于法向与Z轴比较相近,可以设法向为(a, b, 1), a,b 是比较小的量。

现在表示 平面还需要一个点,规定点必须在以(a,b,1)为法向过0点的直线上。

就有直线公式 x0/a=y0/b=z0/c

那么只要知道z0就可知 x0=az0, y0=bz0.

综上,可以使用a, b, z0 表示一个法向与Z轴相近的 平面。

转化为线性规划(法向与Z轴接近)

设 a = ( z 0 , A a , A b ) , d i = F ( x i ;   a ) , 引入 Γ = M A X i = 1 n    ∣ d i ∣ 设a=(z_0, A_a, A_b), d_i=F(x_i;\ a), 引入\Gamma=\overset n{\underset {i=1}{MAX}}\;|d_i| a=(z0,Aa,Ab),di=F(xi; a),引入Γi=1MAXndi

根据上述定义,可以将原来的最值问题转化为下述条件

对于所有点应该满足

F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) > 0 ) F(x_i;\ a)\le \Gamma, (F(x_i;\ a)>0) F(xi; a)Γ,(F(xi; a)>0)

− F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) < 0 ) -F(x_i;\ a)\le \Gamma, (F(x_i;\ a)<0) F(xi; a)Γ,(F(xi; a)<0)

我们可以通过小量迭代慢慢减小Γ

m a x      Δ Γ s . t .     F ( x i , a ) + J Δ a ≤ Γ − Δ Γ , ( i = 1 , 2... n )           − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ , ( i = 1 , 2... n ) Δ Γ ≥ 0 \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ F(x_i, a) + J\Delta a \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \ \ \ \ \ \ \ \ \ -(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \Delta \Gamma \ge0\end{array} max    ΔΓs.t.   F(xi,a)+JΔaΓΔΓ,(i=1,2...n)         (F(xi,a)+JΔa)ΓΔΓ,(i=1,2...n)ΔΓ0

上述条件不需要管 F ( x i , a ) + J Δ a 正负情况,若 F ( x i , a ) + J Δ a 为正 − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ 必成立,反之亦然。 上述条件不需要管F(x_i, a) + J\Delta a正负情况,若F(x_i, a) + J\Delta a为正-(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma必成立,反之亦然。 上述条件不需要管F(xi,a)+JΔa正负情况,若F(xi,a)+JΔa为正(F(xi,a)+JΔa)ΓΔΓ必成立,反之亦然。
求解出以后更新a, Γ。

对线性规划模型标准化

需要对 Δ z 0 , Δ A a , Δ A b 拆解,要求变量都要大于等于 0 需要对\Delta z_0, \Delta A_a, \Delta A_b 拆解,要求变量都要大于等于0 需要对Δz0,ΔAa,ΔAb拆解,要求变量都要大于等于0

m a x      Δ Γ s . t .     J i ⋅ [ Δ z 0 + - Δ z 0 - Δ A a + - Δ A a - Δ A b + − Δ A b − ] + Δ Γ ≤ Γ - d i , ( i = 1 , 2... n )        − J i ⋅ [ Δ z 0 + - Δ z 0 - Δ A a + - Δ A a - Δ A b + − Δ A b − ] + Δ Γ ≤ Γ + d i , ( i = 1 , 2... n ) Δ z 0 + , Δ z 0 − , Δ A a + , Δ A a − , Δ A b + , Δ A b − , Δ Γ ≥ 0 ( 1 ) \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ J_i \cdot \begin {bmatrix} \Delta z_0^+-\Delta z_0^-\\ \Delta A_a^+-\Delta A_a^-\\ \Delta A_b^+- \Delta A_b^- \end{bmatrix} +\Delta \Gamma\le \Gamma-d_i, (i=1,2...n)\\\\ \ \ \ \ \ \ -J_i \cdot \begin {bmatrix} \Delta z_0^+-\Delta z_0^-\\ \Delta A_a^+-\Delta A_a^-\\ \Delta A_b^+- \Delta A_b^- \end{bmatrix}+\Delta \Gamma\le \Gamma+d_i, (i=1,2...n)\\ \Delta z_0^+, \Delta z_0^-, \Delta A_a^+, \Delta A_a^-, \Delta A_b^+, \Delta A_b^-, \Delta \Gamma \ge0\end{array} (1) max    ΔΓs.t.   Ji Δz0+Δz0ΔAa+ΔAaΔAb+ΔAb +ΔΓΓdi,(i=1,2...n)      Ji Δz0+Δz0ΔAa+ΔAaΔAb+ΔAb +ΔΓΓ+di,(i=1,2...n)Δz0+,Δz0,ΔAa+,ΔAa,ΔAb+,ΔAb,ΔΓ0(1)

算法描述

法向与Z轴重合时
x 0 = 0 , y 0 = 0 , z 0 = 0 , a = 0 , b = 0 , c = 1 x_0=0, y_0=0, z_0=0, a=0,b =0, c=1 x0=0,y0=0,z0=0,a=0,b=0,c=1

d i = a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) a 2 + b 2 + c 2 = z i d_i = \frac {a(x_i-x_0) + b(y_i-y_0) + c(z_i-z_0)} {\sqrt{a^2+b^2+c^2}}=z_i di=a2+b2+c2 a(xix0)+b(yiy0)+c(ziz0)=zi

J, D的计算。

3个未知分别对d_i求导结果如下:

求导后a=b=z0=x0=y0=0,c=1要代入

∂ d i ∂ z 0 = ∂ a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) a 2 + b 2 + c 2 ∂ z 0 ∣ z 0 = 0 = − 1 \frac {\partial d_i} {\partial z0}=\frac {\partial \frac {a(x_i-x_0) + b(y_i-y_0) + c(z_i-z_0)}{\sqrt{a^2+b^2+c^2}}} {\partial z0}_{|z0=0} = -1 z0di=z0a2+b2+c2 a(xix0)+b(yiy0)+c(ziz0)z0=0=1

∂ d i ∂ a = ∂ a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) a 2 + b 2 + c 2 ∂ a ∣ a = 0 = x i \frac {\partial d_i} {\partial a}=\frac {\partial \frac {a(x_i-x_0) + b(y_i-y_0) + c(z_i-z_0)}{\sqrt{a^2+b^2+c^2}}} {\partial a}_{|a=0} = x_i adi=aa2+b2+c2 a(xix0)+b(yiy0)+c(ziz0)a=0=xi

∂ d i ∂ b = ∂ a ( x i − x 0 ) + b ( y i − y 0 ) + c ( z i − z 0 ) a 2 + b 2 + c 2 ∂ b ∣ b = 0 = y i \frac {\partial d_i} {\partial b}=\frac {\partial \frac {a(x_i-x_0) + b(y_i-y_0) + c(z_i-z_0)}{\sqrt{a^2+b^2+c^2}}} {\partial b}_{|b=0} = y_i bdi=ba2+b2+c2 a(xix0)+b(yiy0)+c(ziz0)b=0=yi

一次迭代过程

  1. 确定平面初值,Γ, 任意选择三点拟合平面

  2. 根据上述公式(1)构建线性规划方程

  3. 求解 Δ p \Delta p Δp

  4. 更新解
    [ x 0 y 0 z 0 ] = [ x 0 y 0 z 0 ] + U T ⋅ [ p a ∗ p z 0 p b ∗ p z 0 p z 0 ] [ a b c ] = U T ⋅ [ p a p b 1 ] . n o r m a l i z e ( ) Γ = Γ − Δ Γ \begin {array}{l} \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} = \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} + U^T \cdot \begin{bmatrix}p_a*p_{z_0} \\ p_b*p_{z_0} \\ p_{z_0} \end {bmatrix}\\ \\ \begin {bmatrix}a \\ b \\ c \end {bmatrix} = U^T \cdot \begin{bmatrix}p_a \\ p_b \\ 1 \end {bmatrix}.normalize() \\ \\ \Gamma = \Gamma-\Delta \Gamma \end {array} x0y0z0 = x0y0z0 +UT papz0pbpz0pz0 abc =UT papb1 .normalize()Γ=ΓΔΓ

  5. 重复2直到收敛

最后,输出时F=2*Γ

代码实现

代码链接:https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/PlaneFitter.cpp

拟合代码

#include "PlaneFitter.h"
#include "../gauss/FittingPlane.h"
#include <algorithm>
#include <Eigen/Dense>


namespace Chebyshev {
	double PlaneFitter::F(Fitting::Plane plane, const Point& p)
	{
		auto de = p - plane.BasePoint;
		return plane.Orient.dot(de);
	}

	double PlaneFitter::GetError(Fitting::Plane plane, const std::vector<Eigen::Vector3d>& points)
	{
		double err = 0;
		for (auto& p : points) { 
			err = std::max(err, abs(F(plane, p)));
		}

		return err;
	}

	Fitting::Matrix PlaneFitter::Jacobi(const std::vector<Eigen::Vector3d>& points)
	{
		Fitting::Matrix J(points.size(), 3);
		for (int i = 0; i < points.size(); ++i) {
			auto& p = points[i];
			J(i, 0) = -1;
			J(i, 1) = p.x();
			J(i, 2) = p.y();
		}
		return J;
	}

	void PlaneFitter::beforHook(const std::vector<Eigen::Vector3d>& points)
	{
		U = Fitting::getRotationByOrient(plane.Orient);
		for (int i = 0; i < points.size(); ++i) {
			transPoints[i] = U * (points[i] - plane.BasePoint);
		}
	}

	void PlaneFitter::afterHook(const Eigen::VectorXd& xp)
	{
		plane.BasePoint += U.transpose() * Eigen::Vector3d(xp(0) * xp(1), xp(0) * xp(2), xp(0));
		plane.Orient = U.transpose() * Eigen::Vector3d(xp(1), xp(2), 1).normalized();
		gamma -= xp(3);
	}
	Eigen::VectorXd PlaneFitter::getDArray(const std::vector<Eigen::Vector3d>& points)
	{
		Eigen::VectorXd D(points.size());
		for (int i = 0; i < points.size(); ++i)D(i) = points[i].z();
		return D;
	}
	bool PlaneFitter::GetInitFit(const std::vector<Eigen::Vector3d>& points)
	{
		if (points.size() < 3)return false;
		Fitting::FittingBase* fb = new Gauss::FittingPlane();
		fb->Fitting(points, &plane);
		delete fb;

		gamma = GetError(plane, points);
		return true;
	}
	double PlaneFitter::F(const Eigen::Vector3d& p)
	{
		return Chebyshev::PlaneFitter::F(plane, p);
	}
	double PlaneFitter::GetError(const std::vector<Eigen::Vector3d>& points)
	{
		return Chebyshev::PlaneFitter::GetError(plane, points);
	}
	void PlaneFitter::Copy(void* ele)
	{
		memcpy(ele, &plane, sizeof(Fitting::Plane));
	}
	PlaneFitter::PlaneFitter()
	{
		ft = Fitting::FittingType::CHEBYSHEV;
	}
}


测试结果

https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/chebyshev-testdata/officialtest/fitting_result/result.txt
C17 : PLANE : pass
C18 : PLANE : pass
C19 : PLANE : pass
C20 : PLANE : pass
C21 : PLANE : pass
C22 : PLANE : pass
C23 : PLANE : pass
C24 : PLANE : pass
C25 : PLANE : pass
C26 : PLANE : pass


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 20
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值