特殊的变形组合公式求和的推导
设有a(n)=(n+m)/n*a(n-1) ,a(0)=1 (其中m是一个固定的整数) 求a(n)的和
因为有递推式,所以有a(n)=(n+m)/n*(n+m-1)/(n-1)*...*(1+m)/1*a(0)
Go
a(n)=(n+m)/n*(n+m-1)/(n-1)*...*(1+m)/1
GO
a(n)=(n+m)*(n+m-1)*...*(1+m)/n!
Go
a(n)=C(n+m, n)
注意以前从概率的角度求C(n,k)的本质公式的来历的时候,出现过这样的情况有:
a(n,k)=a(n-1,k)+a(n-1,k-1)
因为a(n-1,k-1)=k/(n-k)*a(n-1,k)
所以a(n,k)=n/(n-k)*a(n-1,k)
这个时候k也是固定常数,并且有a(k,k)=k!,/
比较这个公式和上面的递推式可以发现,这里的n等于上面的n+k。所以这样就得到了一般公式。
对于求和而言,这里有一种形式变换后的简单方法:
因为C(n+m, n) =C(n+m ,m)
而C(n+m ,m) =C(n+m+1,m+1)-C(n+m,m+1)
所以a(1)+a(2)+..+a(n)
={C(1+m+1,m+1)-C(1+m,m+1) } + {C(2+m+1,m+1)-C(2+m,m+1) }+...+ {C(n+m+1,m+1)-C(n+m,m+1) }
Go
={C(n+m+1,m+1)-C(1+m,m+1) }
Go
={C(n+m+1,m+1)-1}
因为前面有假设条件a(0)=1
所以a(0)+a(1)+a(2)+..+a(n)=C(n+m+1,m+1)
从这里我们可以看出初始值对这个影响很大,这里面存在怎样的混沌现象?