前言
等比数列的前 n n n项的求和公式的推导方法,就是错位相减求和法。下述视频的第50秒开始;
适用范围
①等比数列[基本];
②差比数列[拓展];错位相减求和法适用于由等差数列 { a n } \{a_n\} { an}和等比数列 { b n } \{b_n\} { bn}对应相乘得到的差比数列 { a n ⋅ b n } \{a_n\cdot b_n\} { an⋅bn};比如有题目给定一个数列 { n 2 n } \{\cfrac{n}{2^n}\} { 2nn},我们先将其适当变形为 { n ⋅ ( 1 2 ) n } \{n\cdot (\cfrac{1}{2})^n\} { n⋅(21)n},则可以看出其第一个因子数列 a n = n a_n=n an=n就是个等差数列,第二个因子数列 b n = ( 1 2 ) n b_n=(\cfrac{1}{2})^n bn=(21)n就是个等比数列;故数列 { a n ⋅ b n } \{a_n\cdot b_n\} { an⋅bn}就是差比数列;
- 如何判断一个数列是等差还是等比数列?
①学会将所给的数列的通项公式找出来;
②从函数的角度看,若数列是关于 n n n的一次型函数,则此数列一定为等差数列;
③从函数的角度看,若数列是关于 n n n的指数型函数,则此数列一定为等比数列;
求和: S n = 1 ⋅ 2 + 2 ⋅ 2 2 + 3 ⋅ 2 3 + ⋯ + n ⋅ 2 n S_n=1\cdot2+2\cdot2^2+3\cdot2^3+\cdots+n\cdot2^n Sn=1⋅2+2⋅22+3⋅23+⋯+n⋅2n;
分析:认真观察此数列,把数列的每一项由乘号分隔开,都人为的拆分为两项,
每一项的第一个因子构成数列为 1 1 1, 2 2 2, 3 3 3, ⋯ \cdots ⋯, n n n,是个等差数列,
每一项的第二个因子构成数列为 2 2 2, 2 2 2^2 22, 2 3 2^3 23, ⋯ \cdots ⋯, 2 n 2^n 2n,是个等比数列,故上述求和是个差比数列求和,应该使用错位相减求和法;
或者你的函数知识掌握的不错的话,则一眼就能认出来其通项公式为 n ⋅ 2 n n\cdot 2^n n⋅2n,故其第一个因子数列 a n = n a_n=n an=n就是个等差数列,第二个因子数列 b n = 2 n b_n=2^n bn=2n就是个等比数列;故
上述求和是个差比数列求和,应该使用错位相减求和法,
相关公式
①等差数列的 S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) ⋅ d 2 S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2} Sn=2n(a1+an)=na1+2n(n−1)⋅d
②等比数列的 S n = { n a 1 , q = 1 a 1 ⋅ ( 1 − q n ) 1 − q = a 1 − a n q 1 − q , q ≠ 1 S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right. Sn=⎩ ⎨ ⎧na1,q=11−qa1⋅(1−qn)=1−qa1−anq,q=1
③ 1 + 2 + 3 + ⋯ + n = n ( n + 1 ) 2 1+2+3+\cdots+ n=\cfrac{n(n+1)}{2} 1+2+3+⋯+n=2n(n+1);
④ 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = [ 1 + ( 2 n − 1 ) ] ⋅ n 2 = n 2 1+3+5+\cdots +(2n-1)=\cfrac{[1+(2n-1)]\cdot n}{2}=n^2 1+3+5+⋯+(2n−1)=2[1+(2n−1)]⋅n=n2,注意求和项数为 n n n项;
⑤ 2 + 4 + 6 + ⋯ + 2 n = ( 2 + 2 n ) ⋅ n 2 = n 2 2+4+6+\cdots +2n=\cfrac{(2+2n)\cdot n}{2}=n^2 2+4+6+⋯+2n=2(2+2n)⋅n=n2,注意求和项数为 n n n项;
⑥ 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ⋅ ( n + 1 ) ⋅ ( 2 n + 1 ) 6 1^2+2^2+3^2+\cdots+ n^2=\cfrac{n\cdot (n+1)\cdot (2n+1)}{6} 12+22+32+⋯+n2=6n⋅(n+1)⋅(2n+1);
⑦ 1 3 + 2 3 + 3 3 + ⋯ + n 3 = [ n ( n + 1 ) 2 ] 2 1^3+2^3+3^3+\cdots+ n^3=[\cfrac{n(n+1)}{2}]^2 13+2