用母函数证明莱布尼兹公式

用母函数证明莱布尼兹公式

因为有:

1/(1-x)=1+x+x^2+x^3+...

用-x换x有:

1/(1+x)=1-x+x^2-x^3+...

方程两边积分有:

In (1+x)=1*x-1/2*x^2+1/3*x^3-1/4*x^4+..

将x等于1代入有:

In  2=1-1/2+1/3-1/4+...

 

下面写程序来证明:

(defun pow (num count)

(if (or (> count 1) (eq  count  1) )

      (* num 

         (pow num 

              (- count 1) ) )

      1))

 

(defun slayer ( count)

(if (or (> count 1) (eq  count  1) )

      (* count 

         (slayer  

              (- count 1) ) )

      1))

 

 

 

(defun  expr (n)

(if (eq  n 1)

       1

       (+  (expr  (1- n))

           (*  (pow  -1 

                     (1+ n))

               (/    1.0

                     n)))))

 

 

 

 

(defun  test (n)

(if (> n 0)

  (progn 

       (print (expr   n))

       (print  'compare)

       (print (log  2))    

       (test (- n 1)))

  (print 'over)))

 

(test  1500) 

n的值越大,两者的值越吻合。注意因为这里是交错的级数,n的值取到1500也没问题,不像以前只能取100以内的数字,同样也说明这个级数收敛得慢。

 

如果将x最后取值变为2,将不再收敛;

 

思维:为什么可以用母函数来证明这个公式???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值