莱布尼茨公式(Leibniz’s rule)
莱布尼茨公式(Leibniz’s rule)是用于求解两个函数乘积的高阶导数的公式。它类似于二项式定理,适用于求解两个函数 u ( x ) u(x) u(x) 和 v ( x ) v(x) v(x) 的乘积 u ( x ) v ( x ) u(x)v(x) u(x)v(x) 的 n n n 阶导数。
莱布尼茨公式的形式如下:
( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
其中:
- ( u v ) ( n ) (uv)^{(n)} (uv)(n) 表示 u ( x ) v ( x ) u(x)v(x) u(x)v(x) 的 n n n 阶导数。
- C n k C_n^k Cnk 是二项式系数,表示从 n n n 个元素中选取 k k k 个元素的组合数。
- u ( n − k ) u^{(n-k)} u(n−k) 表示 u ( x ) u(x) u(x) 的 ( n − k ) (n-k) (n−k) 阶导数。
- v ( k ) v^{(k)} v(k) 表示 v ( x ) v(x) v(x) 的 k k k 阶导数。
具体步骤
-
确定函数 u ( x ) u(x) u(x) 和 v ( x ) v(x) v(x):首先确定你要计算的两个函数 u ( x ) u(x) u(x) 和 v ( x ) v(x) v(x)。
-
计算各阶导数:计算 u ( x ) u(x) u(x) 和 v ( x ) v(x) v(x) 的各阶导数,直到 n n n 阶。
-
应用莱布尼茨公式:将 u ( x ) u(x) u(x) 和 v ( x ) v(x) v(x) 的各阶导数代入莱布尼茨公式,计算每一项的值。
-
求和:将所有项相加,得到 u ( x ) v ( x ) u(x)v(x) u(x)v(x) 的 n n n 阶导数。
示例
假设我们要计算 ( x 2 sin x ) ( 3 ) (x^2 \sin x)^{(3)} (x2sinx)(3),即 x 2 sin x x^2 \sin x x2sinx 的 3 阶导数。
-
确定函数:
u ( x ) = x 2 , v ( x ) = sin x u(x) = x^2, \quad v(x) = \sin x u(x)=x2,v(x)=sinx -
计算各阶导数:
u ( x ) = x 2 ⇒ u ′ ( x ) = 2 x , u ′ ′ ( x ) = 2 , u ′ ′ ′ ( x ) = 0 u(x) = x^2 \quad \Rightarrow \quad u'(x) = 2x, \quad u''(x) = 2, \quad u'''(x) = 0 u(x)=x2⇒u′(x)=2x,u′′(x)=2,u′′′(x)=0v ( x ) = sin x ⇒ v ′ ( x ) = cos x , v ′ ′ ( x ) = − sin x , v ′ ′ ′ ( x ) = − cos x v(x) = \sin x \quad \Rightarrow \quad v'(x) = \cos x, \quad v''(x) = -\sin x, \quad v'''(x) = -\cos x v(x)=sinx⇒v′(x)=cosx,v′′(x)=−sinx,v′′′(x)=−cosx
-
应用莱布尼茨公式:
( x 2 sin x ) ( 3 ) = ∑ k = 0 3 C n 3 u ( 3 − k ) v ( k ) (x^2 \sin x)^{(3)} = \sum_{k=0}^{3} C_n^3 u^{(3-k)} v^{(k)} (x2sinx)(3)=k=0∑3Cn3u(3−k)v(k)计算每一项:
k = 0 : C 3 0 u ( 3 ) v ( 0 ) = 1 ⋅ 0 ⋅ sin x = 0 k = 0: \quad C_3^0 u^{(3)} v^{(0)} = 1 \cdot 0 \cdot \sin x = 0 k=0:C30u(3)v(0)=1⋅0⋅sinx=0k = 1 : C 3 1 u ( 2 ) v ( 1 ) = 3 ⋅ 2 ⋅ cos x = 6 cos x k = 1: \quad C_3^1 u^{(2)} v^{(1)} = 3 \cdot 2 \cdot \cos x = 6 \cos x k=1:C31u(2)v(1)=3⋅2⋅cosx=6cosx
k = 2 : C 3 2 u ( 1 ) v ( 2 ) = 3 ⋅ 2 x ⋅ ( − sin x ) = − 6 x sin x k = 2: \quad C_3^2 u^{(1)} v^{(2)} = 3 \cdot 2x \cdot (-\sin x) = -6x \sin x k=2:C32u(1)v(2)=3⋅2x⋅(−sinx)=−6xsinx
k = 3 : C 3 3 u ( 0 ) v ( 3 ) = 1 ⋅ x 2 ⋅ ( − cos x ) = − x 2 cos x k = 3: \quad C_3^3 u^{(0)} v^{(3)} = 1 \cdot x^2 \cdot (-\cos x) = -x^2 \cos x k=3:C33u(0)v(3)=1⋅x2⋅(−cosx)=−x2cosx
-
求和:
( x 2 sin x ) ( 3 ) = 0 + 6 cos x − 6 x sin x − x 2 cos x = 6 cos x − 6 x sin x − x 2 cos x (x^2 \sin x)^{(3)} = 0 + 6 \cos x - 6x \sin x - x^2 \cos x = 6 \cos x - 6x \sin x - x^2 \cos x (x2sinx)(3)=0+6cosx−6xsinx−x2cosx=6cosx−6xsinx−x2cosx
因此, x 2 sin x x^2 \sin x x2sinx 的 3 阶导数为:
( x 2 sin x ) ( 3 ) = 6 cos x − 6 x sin x − x 2 cos x (x^2 \sin x)^{(3)} = 6 \cos x - 6x \sin x - x^2 \cos x (x2sinx)(3)=6cosx−6xsinx−x2cosx
二项式系数的计算方法
直接公式法
二项式系数 C n k C_n^k Cnk 可以通过以下公式直接计算:
C n k = n ! k ! ( n − k ) ! C_n^k = \frac{n!}{k!(n-k)!} Cnk=k!(n−k)!n!
其中:
- n ! n! n! 表示 n n n 的阶乘,即 n × ( n − 1 ) × ( n − 2 ) × ⋯ × 1 n \times (n-1) \times (n-2) \times \cdots \times 1 n×(n−1)×(n−2)×⋯×1。
- k ! k! k! 表示 k k k 的阶乘。
- ( n − k ) ! (n-k)! (n−k)! 表示 ( n − k ) (n-k) (n−k) 的阶乘。
示例
计算 C 5 2 C_5^2 C52:
C 5 2 = 5 ! 2 ! ( 5 − 2 ) ! = 5 ! 2 ! ⋅ 3 ! = 5 × 4 × 3 × 2 × 1 ( 2 × 1 ) × ( 3 × 2 × 1 ) = 120 2 × 6 = 120 12 = 10 C_5^2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2! \cdot 3!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1) \times (3 \times 2 \times 1)} = \frac{120}{2 \times 6} = \frac{120}{12} = 10 C52=2!(5−2)!5!=2!⋅3!5!=(2×1)×(3×2×1)5×4×3×2×1=2×6120=12120=10
递推公式法
二项式系数 C n k C_n^k Cnk 也可以通过递推公式计算:
C n k = C n − 1 k − 1 + C n − 1 k C_n^k = C_{n-1}^{k-1} + C_{n-1}^{k} Cnk=Cn−1k−1+Cn−1k
其中:
- C n 0 = 1 C_n^0 = 1 Cn0=1 和 C n n = 1 C_n^n = 1 Cnn=1 是初始条件。
示例
计算 C 5 2 C_5^2 C52 使用递推公式:
-
初始条件:
C 5 0 = 1 , C 5 5 = 1 C_5^0 = 1, \quad C_5^5 = 1 C50=1,C55=1 -
递推计算:
C 5 1 = C 4 0 + C 4 1 = 1 + 4 = 5 C_5^1 = C_4^0 + C_4^1 = 1 + 4 = 5 C51=C40+C41=1+4=5C 5 2 = C 4 1 + C 4 2 = 4 + 6 = 10 C_5^2 = C_4^1 + C_4^2 = 4 + 6 = 10 C52=C41+C42=4+6=10
帕斯卡三角形法
帕斯卡三角形(Pascal’s Triangle)也可以用来展示 C n k C_n^k Cnk。每一行的元素是上一行相邻元素的和。
示例
构建帕斯卡三角形的前几行:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
在第 n n n 行(从 0 开始计数)的第 k k k 个元素(从 0 开始计数)就是 C n k C_n^k Cnk。例如, C 5 2 C_5^2 C52 对应第 5 行的第 2 个元素,即 10。
组合性质法
二项式系数 C n k C_n^k Cnk 有一些组合性质,可以简化计算:
- 对称性: C n k = C n n − k C_n^k = C_n^{n-k} Cnk=Cnn−k
- 吸收恒等式: C n k = n k C n − 1 k − 1 C_n^k = \frac{n}{k} C_{n-1}^{k-1} Cnk=knCn−1k−1
- 加法恒等式: C n k = C n − 1 k + C n − 1 k − 1 C_n^k = C_{n-1}^k + C_{n-1}^{k-1} Cnk=Cn−1k+Cn−1k−1
示例
利用对称性计算 C 5 3 C_5^3 C53:
C 5 3 = C 5 2 = 10 C_5^3 = C_5^2 = 10 C53=C52=10