线性代数matrix相乘中顺序的变化
设有如下
ijk
| i1 j1 k1 |
| i2 j2 k2 |
| i3 j3 k3 |
xyz
| x1 y1 z1 |
| x2 y2 z2 |
| x3 y3 z3 |
abc
| a1 b1 c1 |
| a2 b2 c2 |
| a3 b3 c3 |
本来乘法的顺序是 { ijk* { xyz * abc } },
下面证明顺序不变的交换率 { { ijk* xyz} * abc } 。
先看本来的乘法,对于xyz*abc,采用列图象有:
| a1 b1 c1 | * | x1 |
| x2 |
| x3 |
+
| a2 b2 c2 | * | y1 |
| y2 |
| y3 |
+
| a3 b3 c3 | * | z1 |
| z2 |
| z3 |
Go
| a1*x1 b1*x1 c1*x1 |
| a1*x2 b1*x2 c1*x2 |
| a1*x3 b1*x3 c1*x3 |
GO
| a1*x1+a2*y1+a3*z1 b1*x1+b2*y1+b3*z1 c1*x1+c2*y1+c3*z1 |
| a1*x2+a2*y2+a3*z2 b1*x2+b2*y2+b3*z2 c1*x2+c2*y2+c3*z2 |
| a1*x3+a2*y3+a3*z3 b1*x3+b2*y3+b3*z3 c1*x3+c2*y3+c3*z3 |
通过这个过程可以发现matrices相乘时的行列式特征;
这样可以直接写出乘ijk时的值为:
| { a1*x1+a2*y1+a3*z1 }*i1+{a1*x2+a2*y2+a3*z2}*j1+{a1*x3+a2*y3+a3*z3}*k1
{ b1*x1+b2*y1+b3*z1 }*i1+{b1*x2+b2*y2+b3*z2}*j1+{b1*x3+b2*y3+b3*z3}*k1
{ c1*x1+c2*y1+c3*z1 }*i1+{c1*x2+c2*y2+c3*z2}*j1+{c1*x3+c2*y3+c3*z3}*k1 |
| { a1*x1+a2*y1+a3*z1 }*i2+{a1*x2+a2*y2+a3*z2}*j2+{a1*x3+a2*y3+a3*z3}*k2
{ b1*x1+b2*y1+b3*z1 }*i2+{b1*x2+b2*y2+b3*z2}*j2+{b1*x3+b2*y3+b3*z3}*k2
{ c1*x1+c2*y1+c3*z1 }*i2+{c1*x2+c2*y2+c3*z2}*j2+{c1*x3+c2*y3+c3*z3}*k2 |
| { a1*x1+a2*y1+a3*z1 }*i3+{a1*x2+a2*y2+a3*z2}*j3+{a1*x3+a2*y3+a3*z3}*k3
{ b1*x1+b2*y1+b3*z1 }*i3+{b1*x2+b2*y2+b3*z2}*j3+{b1*x3+b2*y3+b3*z3}*k3
{ c1*x1+c2*y1+c3*z1 }*i3+{c1*x2+c2*y2+c3*z2}*j3+{c1*x3+c2*y3+c3*z3}*k3 |
对这个结果的第一行第一列可以查看:
{ a1*x1+a2*y1+a3*z1 }*i1+{a1*x2+a2*y2+a3*z2}*j1+{a1*x3+a2*y3+a3*z3}*k1
GO
以a为目标合并有:
{x1*i1+x2*j1+x3*k1}*a1+{y1*i1+y2*j1+y3*k1}*a2+{z1*i1+z2*j1+z3*k1}*a3
GO
如果上面为特定matrix与abc相乘,则特定matrix的第一行为:
|{x1*i1+x2*j1+x3*k1} {y1*i1+y2*j1+y3*k1} {z1*i1+z2*j1+z3*k1} |
而如果继续把这个作为特定matrix与xyz相乘的结果,则特定matrix的第一行为:
|i1 j1 k1|
仔细观察可以发现a1,a2,a3的系数分别为ijk与xyz相乘的结果。这样命题得到证明;