线性代数matrix相乘中顺序的变化

线性代数matrix相乘中顺序的变化

设有如下

ijk

| i1  j1  k1 |   

| i2  j2  k2 |    

| i3  j3  k3 |   

xyz

| x1  y1  z1 |   

| x2  y2  z2 |    

| x3  y3  z3 |   

abc

| a1  b1  c1 |   

| a2  b2  c2 |    

| a3  b3  c3 |

本来乘法的顺序是 { ijk* { xyz * abc } },

下面证明顺序不变的交换率 { { ijk*  xyz} * abc } 。

先看本来的乘法,对于xyz*abc,采用列图象有:

| a1  b1  c1 |  *  | x1  |   

                   | x2  |    

                   | x3  |

+

| a2  b2  c2 |  *  | y1  |   

                   | y2  |    

                   | y3  |

+

| a3  b3  c3 |  *  | z1  |   

                   | z2  |    

                   | z3  |

 

Go

| a1*x1  b1*x1  c1*x1 |   

| a1*x2  b1*x2  c1*x2  |    

| a1*x3  b1*x3  c1*x3  |

 

 

 

GO

| a1*x1+a2*y1+a3*z1   b1*x1+b2*y1+b3*z1  c1*x1+c2*y1+c3*z1  |   

| a1*x2+a2*y2+a3*z2  b1*x2+b2*y2+b3*z2  c1*x2+c2*y2+c3*z2  |    

| a1*x3+a2*y3+a3*z3  b1*x3+b2*y3+b3*z3  c1*x3+c2*y3+c3*z3  |

 

通过这个过程可以发现matrices相乘时的行列式特征;

这样可以直接写出乘ijk时的值为:

| { a1*x1+a2*y1+a3*z1 }*i1+{a1*x2+a2*y2+a3*z2}*j1+{a1*x3+a2*y3+a3*z3}*k1  

  {  b1*x1+b2*y1+b3*z1 }*i1+{b1*x2+b2*y2+b3*z2}*j1+{b1*x3+b2*y3+b3*z3}*k1  

  {  c1*x1+c2*y1+c3*z1 }*i1+{c1*x2+c2*y2+c3*z2}*j1+{c1*x3+c2*y3+c3*z3}*k1   |   

| { a1*x1+a2*y1+a3*z1 }*i2+{a1*x2+a2*y2+a3*z2}*j2+{a1*x3+a2*y3+a3*z3}*k2  

  {  b1*x1+b2*y1+b3*z1 }*i2+{b1*x2+b2*y2+b3*z2}*j2+{b1*x3+b2*y3+b3*z3}*k2  

  {  c1*x1+c2*y1+c3*z1 }*i2+{c1*x2+c2*y2+c3*z2}*j2+{c1*x3+c2*y3+c3*z3}*k2   |  

| { a1*x1+a2*y1+a3*z1 }*i3+{a1*x2+a2*y2+a3*z2}*j3+{a1*x3+a2*y3+a3*z3}*k3  

  {  b1*x1+b2*y1+b3*z1 }*i3+{b1*x2+b2*y2+b3*z2}*j3+{b1*x3+b2*y3+b3*z3}*k3  

  {  c1*x1+c2*y1+c3*z1 }*i3+{c1*x2+c2*y2+c3*z2}*j3+{c1*x3+c2*y3+c3*z3}*k3   | 

对这个结果的第一行第一列可以查看:

   { a1*x1+a2*y1+a3*z1 }*i1+{a1*x2+a2*y2+a3*z2}*j1+{a1*x3+a2*y3+a3*z3}*k1  

GO

以a为目标合并有:

{x1*i1+x2*j1+x3*k1}*a1+{y1*i1+y2*j1+y3*k1}*a2+{z1*i1+z2*j1+z3*k1}*a3

GO

如果上面为特定matrix与abc相乘,则特定matrix的第一行为:

|{x1*i1+x2*j1+x3*k1}  {y1*i1+y2*j1+y3*k1}  {z1*i1+z2*j1+z3*k1} |

而如果继续把这个作为特定matrix与xyz相乘的结果,则特定matrix的第一行为:

|i1  j1  k1|

仔细观察可以发现a1,a2,a3的系数分别为ijk与xyz相乘的结果。这样命题得到证明;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值