使用通俗易懂的大白话解析:贝叶斯定理、最大似然估计

通俗易懂的大白话解析:贝叶斯定理 & 最大似然估计(MLE)


1. 贝叶斯定理(Bayes' Theorem)

一句话解释

贝叶斯定理就是“先有点预判(先验概率),然后拿到新证据,再更新你的判断(后验概率)。”

生活中的例子

例子:感冒 vs. 打喷嚏

假设你在路上看到一个人打喷嚏,你想知道 “他是不是感冒了?” 这时,你可以用 贝叶斯定理 来分析。

  • 你对人们感冒的预估(先验概率 P(D))
    比如,冬天里一般有 10% 的人感冒,所以感冒的概率 P(D) = 0.1。

  • 如果感冒了,打喷嚏的概率(P(T|D))
    假设感冒的人有 80% 的概率会打喷嚏,所以 P(T|D) = 0.8。

  • 如果没感冒,打喷嚏的概率(P(T|~D))
    但有时候人们也会因为灰尘或过敏打喷嚏,假设健康的人有 5% 的概率打喷嚏,所以 P(T|~D) = 0.05。

  • 你看到他打喷嚏,这个新信息会影响你的判断(后验概率 P(D|T))
    贝叶斯定理告诉你:

    这里:

    代入数值计算:

    计算后大约是 0.64,也就是说,看到他打喷嚏后,你觉得他感冒的概率从 10% 提高到了 64%

总结

贝叶斯定理就是 “先有个大致判断(先验),然后根据新证据调整判断(后验)”
在医学诊断、垃圾邮件过滤、机器学习等领域都很有用!


2. 最大似然估计(Maximum Likelihood Estimation, MLE)

一句话解释

“假设你不知道真实情况,但你有一堆数据,你想找到最可能的解释。”

生活中的例子

例子:猜测朋友的口味

假设你有个朋友,他去奶茶店每次都点同样的甜度,但你不知道他最喜欢的是 无糖、少糖、半糖、全糖 哪一种。你决定观察他 10 天的点单数据:

日期甜度
1半糖
2少糖
3半糖
4半糖
5半糖
6少糖
7半糖
8半糖
9半糖
10半糖

你发现:

  • 他 8 次点了“半糖”
  • 他 2 次点了“少糖”
  • 他从没点过“无糖”或“全糖”

那么,你最合理的猜测是什么?
他最喜欢的甜度应该是“半糖”!(因为这是他点得最多的)

这就是 最大似然估计(MLE),它的核心思想就是:
“在已知数据的情况下,找到最可能的参数。”

数学解释

最大似然估计的公式是:

意思是:找到使得“观察到的数据”最可能出现的参数

在上面的例子里,我们想找出 最可能的甜度,所以:


3. 贝叶斯 vs. MLE

对比点贝叶斯定理最大似然估计(MLE)
主要思想用新证据更新旧判断找到最可能的解释
需要先验知识?要有先验概率不需要先验知识
适用场景医学诊断、机器学习、垃圾邮件检测统计推断、机器学习、参数估计

总结

  • 贝叶斯定理“先有猜测 + 看到新证据 = 更新判断”(适合不确定性问题)。
  • 最大似然估计(MLE)“从数据中找到最可能的解释”(适合参数估计)。

希望这个通俗解释能帮到你!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宝哥Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值