我们可以用一个形象的比喻来解释策略梯度法(Policy Gradient)。
比喻:爬山寻宝
假设你是一名探险家,正在一座大山上寻找宝藏。山上有很多路径,每条路径通向不同的地方,你的目标是找到通向宝藏的最佳路径。你手里有一张地图,但它不完全准确,所以你需要通过不断尝试和改进来找到最佳路径。
1. 初始策略
一开始,你随便选择了一条路径。这就是你的初始策略。你按照这条路径走了一段时间,发现了几个有趣的地方和一些障碍物。
2. 评估策略
你记录下了这次探险的结果:你走过的路径、遇到的障碍和发现的宝藏(如果有)。根据这些结果,你评估这条路径的好坏。例如,如果你找到了一些宝藏,这条路径的评分就高;如果你遇到了很多障碍,这条路径的评分就低。
3. 改进策略
根据这次探险的结果,你决定微调你的路径。也许你决定在某个岔路口选择另一条小路,避开一些障碍。你根据上次探险的经验,稍微调整你的策略。这个调整的过程就是策略梯度法的核心:根据得到的反馈(评分),调整你的策略,使得下一次探险更有可能接近宝藏。
4. 重复探索
你不断重复这个过程:选择路径 -> 探险 -> 评估 -> 调整策略。每次调整都是基于上一次探险的结果,逐步改进你的路径。
订阅专栏 解锁全文
1098

被折叠的 条评论
为什么被折叠?



