【大模型实战】 CUDA安装及Pytorch GPU版本安装教程(2025版最新最全教程安装)

1.前言

(1)所需软件包

总共需要安装3个文件:CUDA、cuDNN和pytorch,CUDA、cuDNN和PyTorch是深度学习和高性能计算中常见的技术栈组合。
以下是它们各自的作用和如何协同工作:

软件包 描 述
CUDA CUDA(Compute Unified Device Architecture)是NVIDIA开发的一种并行计算平台和编程模型,允许开发者使用NVIDIA GPU进行通用计算。
cuDNN cuDNN(CUDA Deep Neural Network library)是NVIDIA提供的一个用于深度神经网络的GPU加速库,提供了高度优化的深度学习算法实现,如卷积、池化、归一化、激活函数等,使得深度学习模型的训练和推理过程可以在GPU上高效运行。
PyTorch PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。支持自动微分,可以自动计算梯度,简化了神经网络的训练过程,提供了丰富的预训练模型和工具,方便开发者进行模型的迁移学习和应用开发。

通过CUDA、cuDNN和PyTorch的协同工作,开发者可以充分利用GPU的并行计算能力,高效地进行深度学习模型的开发和应用。

(2)所需环境配置

环境工具
Windows11
cuda_12.1.0_531.14_windows
cudnn-windows-x86_64-9.6.0.74_cuda12-archive
torch-2.3.1+cu121-cp39-cp39-win_amd64.whl

资源链接见文末

(3)查看电脑GPU支持的CUDA版本

Win键+R键打开运行,输入cmd,点击确认。
输入nvidia-smi

在这里插入图片描述

可以看到CUDA最高支持12.6版本 ,可以安装12.6以下的版本。
因pytorch支持版本更新问题,建议不要使用最新的支持版本,本文使用12.1版本。

2.安装CUDA

Neo4j是基于Java的图形数据库,因此必须安装JAVA的JDK。

(1)下载CUDA

CUDA各版本选择链接如下:我安装的是12.1.0版本
CUDA 软件下载链接

### 关于 CUDA 12.8 支持的 Python 版本 目前官方并未明确发布针对 CUDA 12.8 的具体支持情况,但可以基于已知的信息推测其适用范围。通常情况下,CUDA 工具链会保持对主流 Python 版本的支持,尤其是那些广泛使用的长期维护版本。 #### 主流 Python 版本支持 根据以往的经验以及 NVIDIA 和 PyTorch 官方文档中的惯例[^3],以下是可能被 CUDA 12.8 所支持的主要 Python 版本: - **Python 3.7**: 虽然逐渐接近生命周期结束,但在某些旧项目中仍然有需求。 - **Python 3.8**: 广泛应用于生产环境,属于稳定的选择之一。 - **Python 3.9**: 提供了一些性能改进和新特性,在开发者社区中有较高接受度。 - **Python 3.10**: 增加了许多现代化功能,适合开发新型应用程序。 - **Python 3.11**: 性能显著提升,成为当前推荐的新一代标准版本[^4]。 需要注意的是,尽管理论上这些版本均有可能得到支持,实际操作还需参照具体的框架(如 TensorFlow 或 PyTorch)对于该组合的要求来进行验证测试。 另外值得注意的一点在于,如果遇到类似“The detected CUDA version mismatches”的错误提示,则表明所选组件间存在版本冲突问题[^2]。此时应当仔细核对各个依赖库之间的兼容性矩阵,并按照官方指导调整至一致状态。 最后提醒一点关于VS Code插件方面的问题,当使用Linux系统的最新Visual Studio Code可能会面临无法正常执行Python调试的情况发生时,可以选择回退到指定稳定发行号比如1.85来规避潜在风险因素影响工作流程效率[^1]。 ```python import torch print(torch.__version__) print(torch.version.cuda) ``` 上述代码可用于检测当前环境中PyTorch及其关联CUDA驱动程序的具体版本信息以便进一步排查配置适配状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识靠谱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值