【大模型实战】 CUDA及Pytorch GPU版本安装教程(2025版最新最全教程安装)
1.前言
(1)所需软件包
总共需要安装3个文件:CUDA、cuDNN和pytorch,CUDA、cuDNN和PyTorch是深度学习和高性能计算中常见的技术栈组合。
以下是它们各自的作用和如何协同工作:
软件包 | 描 述 |
---|---|
CUDA | CUDA(Compute Unified Device Architecture)是NVIDIA开发的一种并行计算平台和编程模型,允许开发者使用NVIDIA GPU进行通用计算。 |
cuDNN | cuDNN(CUDA Deep Neural Network library)是NVIDIA提供的一个用于深度神经网络的GPU加速库,提供了高度优化的深度学习算法实现,如卷积、池化、归一化、激活函数等,使得深度学习模型的训练和推理过程可以在GPU上高效运行。 |
PyTorch | PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。支持自动微分,可以自动计算梯度,简化了神经网络的训练过程,提供了丰富的预训练模型和工具,方便开发者进行模型的迁移学习和应用开发。 |
通过CUDA、cuDNN和PyTorch的协同工作,开发者可以充分利用GPU的并行计算能力,高效地进行深度学习模型的开发和应用。
(2)所需环境配置
-
环境工具
- Windows11
- cuda_12.1.0_531.14_windows
- cudnn-windows-x86_64-9.6.0.74_cuda12-archive
- torch-2.3.1+cu121-cp39-cp39-win_amd64.whl
资源链接见文末
(3)查看电脑GPU支持的CUDA版本
Win键+R键打开运行,输入cmd,点击确认。
输入nvidia-smi
可以看到CUDA最高支持12.6版本 ,可以安装12.6以下的版本。
因pytorch支持版本更新问题,建议不要使用最新的支持版本,本文使用12.1版本。
2.安装CUDA
Neo4j是基于Java的图形数据库,因此必须安装JAVA的JDK。
(1)下载CUDA
CUDA各版本选择链接如下:我安装的是12.1.0版本
CUDA 软件下载链接