[电路]系列文章目录
1-发出功率和吸收功率关系
2-独立源和受控源
3-基尔霍夫定律
4-两端电路等效变换、电阻串并联
5-电压源、电流源的串联和并联
6-电阻的星形连接和角形连接等效变换(星角变换)
7-实际电源模型和等效变换
8-无源一端口网络输入电阻
9-电路的图及相关概念
文章目录
一、基本概念
线性电路的一般分析法就是根据 KCL、KVL 及元件电压和电流关系列方程、解方程。根据列方程时所选变量的不同可分为 支路电流法、回路电流法和结点电压法。
本文以如下电路为例,对涉及到的基本概念进行阐述。
文章中,结点数目用 n 表示,支路数用 b 表示。
1 图
定义: 图 G 是具有给定连接关系的结点和支路的集合
注意:
(1)图中的结点和支路各自是一个整体
(2)移去图中的支路,与它所联接的结点依然存在,因此允许有孤立结点存在
(3)如把结点移去,则应把与它联接的全部支路同时移去,因此不存在孤立的支路
示意图:
下图为电路的一个图。当用不同的元件结构定义电路的一条支路时,该电路的图以及它的节点数和支路数将随之不同。
分类: 电路图按照是否赋予支路方向,分为有向图和无向图
1.1 有向图
定义: 赋予支路方向的图
1.2 无向图
定义: 未赋予支路方向的图
2 路径
定义: 从图 G 的一个结点出发沿着一些支路连续移动到达另一结点所经过的支路构成路径
3 连通图
定义: 图 G 的任意两结点间至少有一条路径时称为连通图,非连通图至少存在两个分离部分
4 子图
定义: 若图
G
1
G_1
G1 中所有支路和结点都是图 G 中的支路和结点,则称
G
1
G_1
G1 是 G 的子图
5 树(Tree)
定义: 包含图 G 的全部结点且不包含任何回路的连通子图
举例:
(1)下面两个图都是上述电路的树
(2)下面的子图包含了一个回路,因此不是该电路的树
5.1 树支
定义: 构成树的支路
5.2 连支
定义: 属于 G 而不属于树(T)的支路
5.3 说明
- 对应一个图有很多的树
- 树支的数目是确定的,用
b
t
b_t
bt 表示:
b t = n − 1 b_t = n-1 bt=n−1 - 连支数目也是确定的,用
b
l
b_l
bl 表示:
b l = b − b t = b − ( n − 1 ) b_l = b - b_t = b - (n-1) bl=b−bt=b−(n−1)
6 回路
定义: 一条路径的起点和终点重合,且经过的其他结点不出现重复,这条闭合路径就构成图 G 的一个回路
示意图: 一个图有很多的回路,下图为电路的其中一个回路
7 基本回路
定义: 对于图 G 的任意一个树,加入一个连支后,就会形成一个回路,并且此回路除所加连支外均由树支组成,这种回路成为基本回路,也称单连支回路
示意图: 下图均为该电路的基本回路
8 平面图
定义: 如果把一个图画在平面上,能使它的各条支路除连接的结点外不再交叉,这样的图成为平面图,否则成为非平面图
示意图:
(1)平面图
(2)非平面图
9 网孔
定义: 平面图的一个网孔是它的一个自然的“孔”,其限定的区域内不再有支路,平面图的网孔数也就是独立回路数
二、关系式
名称 | 符号 |
---|---|
结点数 | n |
支路数 | b |
树支数 | b t b_t bt |
连支数 | b l b_l bl |
基本回路数 | l |
b t = n − 1 l = b l = b − ( n − 1 ) 支 路 数 = 树 支 数 + 连 支 数 = 结 点 数 − 1 + 基 本 回 路 数 b_t = n-1 \\ l = b_l = b-(n-1) \\ 支路数=树支数 + 连支数 = 结点数 - 1 + 基本回路数 bt=n−1l=bl=b−(n−1)支路数=树支数+连支数=结点数−1+基本回路数
更多内容关注微信公众号:城南以南95
愿余生,不负岁月,不负自己。 喜欢就点个赞吧