一 问题描述
二 分析
可以使用平衡二叉树 AVL 解决。
三 算法设计
1 读入指令 n,判断类型。
2 如果 n = 1,则读入客户 num 以及优先级 val,将其插入平衡二叉树中。
3 如果 n = 2,此时平衡二叉树为空,则输出0,否则输出最大值并删除。
4 如果 n = 3,此时平衡二叉树为空,则输出0,否则输出最小值并删除。
四 代码
package com.platform.modules.alg.alglib.poj3481;
public class Poj3481 {
public String cal(String input) {
AVLTree avlTree = new AVLTree();
String[] split = input.split("\n");
String output = "";
for (String line : split) {
String[] word = line.split(" ");
switch (word[0]) {
case "0":
break;
case "1":
avlTree.add(new Node(Integer.parseInt(word[2]), Integer.parseInt(word[1])));
break;
case "2":
if (avlTree.root == null) {
output += "0";
output += "\n";
} else {
Node node = avlTree.findMax();
output += node.num;
output += "\n";
avlTree.delNode(node.value);
}
break;
case "3":
if (avlTree.root == null) {
output += "0";
output += "\n";
} else {
Node node = avlTree.findMin();
output += node.num;
output += "\n";
avlTree.delNode(node.value);
}
break;
}
}
return output;
}
class AVLTree {
// 根节点
private Node root;
public Node getRoot() {
return root;
}
/**
* 功能描述:查找要删除的结点
*
* @param value 要删除节点的值
* @return Node 要删除的节点
* @author cakin
* @date 2021/3/25
*/
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
public Node findMax() { // 找优先级最大的结点
Node temp = root;
while (temp.right != null) {
temp = root.right;
}
return temp;
}
pub