一 实例描述
假设有一组数据集,其中x和y的对应关系为出y≈2x。
本实例就是让神经网络学习这些样本,并能够找到其中的规律,即让神经网络能够总结出y≈2x这样的公式。
二 深度学习的4个步骤
1 准备数据
2 搭建模型
3 迭代训练
4 使用模型
准备数据阶段一般就是把任务相关数据收集起来,然后建立网络模型,通过一定的迭代训练让网络学习到收集来的数据特征,形成可用的模型,之后就是使用模型来为我们解决问题。
三 准备数据
这里使用y=2x这个公式来做主体,通过加入一些干扰噪声让它的“等号”变成“约等于”。
1 代码算法
1.1 导入头文件,然后生成-1~1之间的100个数作为x
1.2 将x乘以2,再加上一个[-1,1]区间的随机数×0.3。即,y≈2×x+ax0.3(a属于[-1,1]之间的随机数)。
2 代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#生成模拟数据
train_X = np.linspace(-1, 1, 100)
train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声
#显示模拟数据点
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.legend()
plt.show()
3 运行结果
四 搭建模型
1 正向搭建模型
1.1 正向模型及公式
神经网络是由多个