LDPC Codes in 5G- 06 : 编码

本文详细介绍了LDPC编码在3GPP 38.212协议中的应用,重点讨论了双对角线结构的原理及其在奇偶校验位计算中的作用。通过历史回顾、规范解读和双对角线结构的深入剖析,帮助读者理解编码过程和其在通信标准中的关键角色。
摘要由CSDN通过智能技术生成

前言:

        在我们编码前,信息bit流m 是已知的,LDPC编码过程最主要的是

得到校验bit流 P,通过本篇学习,一方面了解如何跟3GPP 协议规范进行对应

另一方面了解为什么要用双对角线结构(double diagonal structure)

目录:

  1.      历史回顾
  2.      3GPP 规范解读
  3.      双对角线结构

一 历史回顾

 以上图为例:

                 发送消息数据为 m=[m_1,m_2,m_3]

                 经过编码后加入奇偶校验位 p=[p_1,p_2,p_3],形成码字c

     奇偶校验矩阵H 可以表示为 H=[M,I]

     I 为[3,3]单位矩阵

   

      [M,I]\begin{bmatrix} m^T\\ P^T \end{bmatrix}=0

      Mm^T+P^T=0

     P^T=Mm^T

      NR 编码时候,奇偶校验位也是通过上面方法计算出来的,但是稍微有点变换,

稍微复杂点。


二 3GPP 规范解读

   这里重点阐述一下3GPP 38.212 -5.2.2       Low density parity check coding

    里面那Table 5.3.2-2: LDPC base graph 1怎么跟前面映射起来。

     这边以BG2 是这种格式为例

   奇偶校验矩阵P,则对应3GPP 表格里面的

     row index [0,3]

    column index[10,13]

    

根据表格我们可以得到P的值如下

 

     构成了一个双对角结构,这个矩阵有个特点,如果按照列,考虑非(-1的元素,-1对应为0)

把相同的元素对消,会只剩下第一列。 后面会在双对角结构进一步细讲。


三  双对角线结构

    这里面重点讲解一下为神马要双对角线结构,主要是为了得到奇偶校验部分

    这里面的I_k:

             是指根据扩展因子z,生成一个单位矩阵,然后右循环置换K次

   根据 Hc^T=0

  可以得到四个多项式:

                              I_1m_1+I_3m_3+I_1m_4+I_2P_1+P_2=0

                               I_2m_1+m_2+I_3m_4+p_2+p_3=0

                               I_4m_2+I_2m_3+m_4+I_1P_1+P_3+P_4=0

                                I_4m_1+I_1m_2+m_3+I_2P_1+P_4=0

  通过矩阵很容易看出来,同一列相同元素,相加肯定为0(相同项异或为0)

 把上面4个多项式相加,去掉奇偶校验位相同的部分

I_1P_1=I_1m_1+I_3m_3+I_1m_4+I_2m_1+m_2+I_3m_4+I_4m_2+I_2m_3+m_4+I_4m_1+I_1m_2+m_3

 可以解码出P1

 然后依次解码出P_2,P_3,P_4

我们再看双对角线结构是不是很清晰了

当得到P_1,P_2,P_3,P_4, 按行继续解多项式,很容易得到后面的奇偶校验位P_5,P_6,P_7,P_8,P_9,P_{10}

根据扩展因子Z=48,每个m_i ,P_i对应48个bit.

 code Rate =\frac{k}{N}

  k = 480 

  N = 480+ Number(P) 加上奇偶校验位长度

 比如只用P_1,P_2,P_3,P_4

code rate = 480/(480+4*48)=0.714

 全部采用

  oode rate = 480/(480+480)=0.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值