无线感知会议系列【1】【增强无线感知应用的鲁棒性】

前言:

       这个是2021年 泛在可信智能感知论坛,汤战勇   (西北大学物联网研究院 )教授的

一个讲座《wireless signals like WiFi, RFID and (ultra) sound as a powerful modality for ubiquitous  sensing》

    参考连接:

     4.见微知萌——增强无线感知应用的鲁棒性;汤战勇 西北大学 教授_哔哩哔哩_bilibili


目录: 

  1.    背景简介
  2.    Rise 论文
  3.    会议讨论
  4.    无线感知研究方向探讨

一  技术领域

       主要应用方向: 隔墙探测,材料识别,手势识别

      

     2018年发表了一篇论文 CrossSense,基于该研究基础上,于2021年在MobiCom 提出一篇Rise

的论文,一定程度上解决了跨场景数据漂移问题

   1.1 CrossSense (2018年论文)    

      CrossSense 是一篇关于将WiFi感知扩展到新环境和更大规模问题的论文。以下是对该论文的详细介绍:迁移学习&集成学习

一、论文背景与动机

      随着WiFi技术的普及和物联网(IoT)的发展,WiFi已成为一种强大的信息感知媒介。然而,现有的WiFi感知技术存在两个显著的缺点:

一是跨站点泛化能力弱:

        即在不同环境下训练的数据模型难以直接应用于新环境;跨场景感知问题

二是可支持的问题规模小

          随着目标数量的增加,现有技术的性能会迅速下降,限制了其在大规模环境中的应用。

        为了解决这些问题,CrossSense被提出。

二、CrossSense的核心贡献

        CrossSense旨在通过以下方式改进WiFi感知技术:

  1. 降低传感模型训练数据采集的成本
    • 采用机器学习离线训练漫游模型,该模型由一组测量值生成,用于描述无线信道度量(如信道状态信息CSI或接收信号强度指示器RSSI)如何受到目标(如步态或手势)的影响。
    • 利用传输学习技术,重用神经网络起始层提取的与优化问题无关的WiFi信号特性,从而在不同站点和任务之间有效地重用所学知识,减少为新环境构建传感模型所需的数据采集量。
  2. 扩展WiFi感知的规模和普及
    • 采用基于专家的混合方法,使用多个专门的传感模型或“专家”来捕获从不同WiFi输入到所需输出的映射。每个专家专门用于处理特定应用场景和输入数据的子集,从而在更大规模的问题中提供稳定的性能。
    • 允许新模型的轻松添加和只在适当时被选择,为创新应用和服务开辟了新的可能性。

三、应用场景与实验结果

CrossSense在以下两个WiFi感知应用上进行了评估:

  1. 步态识别:通过测量用户行走时WiFi信号的变化来识别用户的步态特征。
  2. 手势识别:利用WiFi信号的变化来识别用户的手势动作。

实验结果表明:

      CrossSense能够显著提高WiFi感知的精度和泛化能力。与最先进的WiFi感知方法相比,CrossSense将精度提高了4倍,并将步态识别和手势识别的精度分别提高到90%以上。同时,CrossSense还能够在不同站点间有效地转换和利用WiFi训练测量值,支持更大规模的问题处理。

四、论文的主要贡献

  1. 提出了一个自动方案:以有效利用现有WiFi训练测量,为新环境构建传感模型。
  2. 首次应用了迁移学习:以便在不同地点和任务之间有效地重用所学知识,用于WiFi感知。
  3. 将WiFi传感模型混合起来:扩大了可支持问题的规模,比最先进的技术提供了显著的性能改进。

五、结论与展望

         CrossSense通过解决当前无线传感解决方案中的跨站点泛化和可支持问题规模的缺点,为WiFi感知技术的发展开辟了新的方向。未来,随着技术的不断进步和应用场景的不断拓展,CrossSense有望在更多领域发挥重要作用,推动无线感知技术的进一步发展。

问题:

        1: 无法解决持续性改变

        2:   跨场景感知打标签不易

        3: 感知模型无法判断自己感知的准确性

MobiCom,全称为The Annual International Conference on Mobile Computing and Networking,即年度国际移动计算和网络大会,是ACM SIGMobile开办的无线和移动通信领域的顶尖会议。以下是对MobiCom的详细介绍


二   Rise 论文

     2.1 简介

           我们训练好一个模型后,当实际部署的时候,因为测试集上的数据分布和

训练时候的数据分布产生较大差异,导致模型预测不准。

         该方案基于 预测得到的概率特征,以及Nonconformity Measure(通过一个训练时候

用过的数据集)特征 使用一个分类器来鉴别数据是否发生漂移

训练特征1: 概率分布

          

2 训练特征2 :Ps

2.2 方案过程

     

2.3 论文详情

          RISE: Robust Wireless Sensing Using Probabilistic and Statistical Assessments的论文与您的查询高度相关。尽管该论文并非直接以“MobiCom Rise”为标题,但它介绍了RISE(Robust Wireless Sensing)技术,并很可能是在MobiCom会议或其相关领域中被讨论或发表的研究成果。

以下是对该论文的详细介绍:

一、论文背景与动机

  • 问题范围:无线感知技术在环境变化时的感知鲁棒性和性能容易受到影响。
  • 动机:提出RISE技术,旨在提高基于学习的无线感知在环境变化时的感知鲁棒性和精度。比如环境中增加一把椅子对模型影响很大,还是模型本身训练有欠缺.

二、RISE技术概述

  • 技术目标:通过识别、跟踪和减轻数据漂移来应对环境变化对无线感知性能的影响。
  • 核心方法
    1. 概率评估:利用分类过程中产生的概率分布来评估预测的可信度。
    2. 统计评估:基于共型预测理论(Conformal Prediction Theory)来量化测试样本和训练样本的奇异性,从而评估预测的可信度。
    3. 异常检测:将概率和统计评估结果结合,输入到SVM异常检测器中,根据评估结果接受或拒绝感知结果。

三、RISE技术的关键特点

  • 增强感知鲁棒性:RISE支持两种策略来增强感知鲁棒性——增量学习和专家混合(集成)。
    • 增量学习:利用在环境中收集的漂移样本对传感模型进行重新训练。
    • 专家混合:采用多个预测模型(专家),并只使用具有高可信度的预测。
  • 快速适应:RISE能够快速确定何时、如何对数据漂移进行应对,确保感知模型在面对环境变化时保持性能。
  •  现有方案
  •  

四、实验结果与贡献

  • 实验结果:在11种基于学习的感知方法上评估RISE,成功识别了平均92%的偏移样本,显著提高了在动态环境中的感知性能。
  • 主要贡献
    1. 提出了RISE技术,有效增强了基于学习的无线感知在环境变化时的鲁棒性和性能。
    2. 采用了共型预测和异常检测来检测数据漂移,提高了模型的可信度评估能力。
    3. 将增量学习和集成学习与异常检测相结合,实现了感知性能的显著提升。

     五、总结

               该论文提出的RISE技术为无线感知领域带来了重要的创新,通过结合概率评估、统计评估和异常检测等方法,有效应对了环境变化对感知性能的影响。RISE技术的成功应用为无线感知技术在复杂环境中的稳定运行提供了有力支持。虽然论文标题并非直接为“MobiCom Rise”,但其研究成果很可能在MobiCom会议或其相关领域内得到了广泛的关注和讨论。

   六 补充知识

     以共形回归为例,其实现步骤通常包括:

  1. 计算误差分布:首先计算历史数据中每个样本点的预测误差,即预测值与真实值之间的绝对差值。然后将这些误差值从小到大排序。
  2. 确定误差临界值:在排序后的误差分布中,选取一个临界值,使得小于等于该临界值的误差所占比例等于期望的置信度(如95%)。该临界值被视为可接受的最大预测误差。
  3. 构建预测区间:对于新的预测样本点,其预测区间被设定为[预测值-误差临界值, 预测值+误差临界值]。根据误差临界值的选取,该预测区间能以期望的置信度(如95%)包含真实值。

  

  2.4 共形预测中的Nonconformity Measure(补充)

共形预测中的Nonconformity Measure

在共形预测框架中,Nonconformity measure用于量化一个数据点与训练集中其他数据点之间的不一致性或“非共形性”。这种度量通常用于评估新数据点相对于已有知识的异常程度或偏离程度。共形预测通过结合Nonconformity measure和显著性水平来生成可靠的预测区间或分类结果。

实现方式

Nonconformity measure的具体实现方式取决于所处理的数据类型和预测任务。以下是一些可能的实现方式:

  1. 基于距离的度量
    • 使用欧几里得距离、曼哈顿距离或其他距离度量来计算数据点与训练集中数据点之间的距离,并将这些距离的某种函数(如最大值、平均值或中位数)作为Nonconformity measure。
  2. 基于模型的度量
    • 利用一个已训练的模型(如分类器、回归器等)来预测新数据点的标签或值,并将预测误差(如绝对误差、平方误差等)作为Nonconformity measure。
  3. 基于统计的度量
    • 利用统计方法(如假设检验、置信区间估计等)来评估新数据点与训练集数据之间的统计差异,并将这种差异作为Nonconformity measure。

示例应用

在文献《Conformal Prediction Based on K-Nearest Neighbors for Discrimination of Ginsengs by a Home-Made Electronic Nose》中,研究者使用基于K-最近邻(KNN)的Nonconformity measure来区分不同种类的人参。他们通过计算待分类样本与训练集中K个最近邻样本之间的距离,并将这些距离作为Nonconformity measure。然后,他们利用这些度量值来构建共形预测器,并评估其分类性能。

总结

虽然没有一个统一的“Nonconformity measure算法”,但这一概念在机器学习和统计学习中具有重要意义。通过量化数据点与已有知识之间的不一致性,Nonconformity measure有助于生成更可靠、更稳健的预测结果。在实际应用中,应根据具体任务和数据类型选择合适的度量方式。

       2.5 论文问题讨论

     1:  不能解决无线感知的核心难点: 异质性问题。需要通过通讯角度去设计,建模 后面张大庆教授有问到。

    2:   Nonconformity Measure 特征的计算有很多方案,具体用哪种方案要根据实际项目

    3:   对于样本不均衡的时候,该方案的FPR 可能会很高(实测)

    4:   实际部署的时候,看需要校验样本,样本量到底要多大,太大了会占用终端存储空间,


三  会议讨论

      3.1 样本漂移鉴别

              如何鉴别漂移样本。如果同样的动作就是因为场景分布差异导致的。

      1  先找出样本跟训练的时候使用的样本差异

      2  使用增量学习,把发生变化的样本保存下来进行重新学习

          落地的时候比较难:

                第一: CSI 信号非常大,如果保存下来可能半小时用户的存储空间就满了

                第二:  CSI 数据集如果过小,对训练没有什么效果

                 第三:  打标签困难

                第四:   在嵌入式终端训练,功耗无法支持,传输到网络会导致功耗急剧增加.

       3.2 落地瓶颈:

             现在大部分的无线感知在实验室里面能做到98%以上的准确率,但是应用的时候,无法落地。环境改变影响特别大。


四 无线感知的研究方向

      4.1 异质性问题

      4.2 如何从通讯的角度作特征工程,提高跨场景的鲁棒性

      4.3 样本偏移

      4.4 跨场景感知的鲁棒性: 要从Fresnel模型去解释同一个动作为什么在CSI信号在不同位置

不同朝向,不同速度差异大。

      4.5 落地瓶颈: 现在大部分的无线感知在实验室里面能做到98%以上的准确率,但是应用的时候,无法落地。

       研究方向: 到底哪些感知对象,哪些场景可以落地

      4.6  多目标跟踪: FMCW 技术较为简单,但是现有的无线通讯CSI较为困难。

      4.7  数据集获取困难: 新的环境需要不断的打Label,可能是一个无数维的问题。

     CSI 信号极大,1小时将近16G的数据集,一天一个环境的场景一般的PC基本就满了。

    4.8 :   行为识别,跨场景感知比较差,模型在哪些场景非常好.

                     比如分类做的非常好,

   4.9 :  自动化Labeling,  换个环境需要重新做训练数据.

                     数据切割(x,y) 以手写数字识别,数据切割

   5.0 :  数据集如何采集

   5.1 :  反射点发生变化对感知影响很大,北大的罗西尼卵形理论

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值