OFDM 十六讲8 Nyquist Zero ISI Theorem

前言:

       主要参考

       

 

         因为后面讲 How to Avoid ISI in Digital Communications,涉及到采样定理.

      这篇主要讲一下什么是采样,以及采样定理

       到目前我们知道ISI 原因主要有两个:

     1: 多径传输,这个通过CP解决

      2: Band Limit 限制,  这里从 Nyquist Zero ISI Theorem  分析一下ISI.

      因为出身物理专业,对通讯背景知识觉得有所欠缺,又补了一下。

   

采样定理

  跟汽车码表一样,一款硬件的采样频率是有极限的。

  根据奈奎采样定理,采样频率必须大于信息频率的2倍,才不会overlap.

如果不做Band-limit 会导致信息的频率非常大,采样频率低于信息频率的2倍,

 引起ovelap.

参考:

      Neso Academy 

Shannon Nyquist Sampling Theorem_哔哩哔哩_bilibili

https://www.youtube.com/watch?v=iQaFDpiNOlA

一   采样定义

采样定义:

         Reduction of continuous time signal to a  discrete time signal.

         我们使用的是数字通讯系统,连续性时间信号是不存在的,实际使用的是

离散时间信号。

        用离散时间信号替代连续时间信号有些限制条件,我们这篇主要讨论

限制条件。


二     时域分析


 

 我们输入的信号为m(t),其傅里叶变换如下图M(w)

 采样信号为冲激串

 c(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT_s)

输出信号

s(t)=m(t)*c(t)

         =m(nT_s)


三 频域分析

      根据时域的乘积对应频域的卷积,输出信号的傅里叶变换为

      s(w)=\frac{1}{2\pi}[M(w)\star c(w)]

     其中采样信号的傅里叶变换为

     c(w)=w_s\sum_{n=-\infty}^{\infty}\delta(w-n w_s)

    则输出信号的傅里叶变换为

     s(w)=\frac{1}{2\pi}[M(w)\star w_s \sum_{-\infty}^{\infty}\delta(w-nw_s)]

              =\frac{w_s}{2\pi}[\sum_{-\infty}^{\infty} m(w)\star \delta(w-nw_s)]

               =\frac{1}{T_s}\sum_{n=-\infty}^{\infty}m(w-nw_s)

            上面利用了狄拉克函数的性质4。

             

 


四  频域展开(Nyquist  Theorem)

 s(w)=\frac{1}{T_s}\sum_{n}m(w-nw_s)

         =\frac{1}{T_s}[...+m(w+w_s)+m(w+0)+m(w-w_s)+...]

     n>0时候,相当于把频谱右移动nw_s

1:   有GB(guard band) 场景

         

   w_s-w_m>w_m, 频谱之间无重叠,相当于有段GB 保护

   w_s>2w_m

  采样信号的频率大于2倍发送信息的频率

  T>2*T_S(信息周期要大于2倍个采样周期)

4.2  无GB场景

 

    w_s=2w_m

    采样频率等于两倍信息的频率

4.3  小于两倍角频率

        w_s< 2w_m,这个时候就有overlap ,产生了干扰。

     

 

     


五  傅里叶变换补充知识

5.1   傅里叶级数

       给定一个周期为T的函数,那么它可以表示为无穷级数

        f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}[a_n cos(\frac{2\pi nx}{T})+ b_n sin(\frac{2\pi n x}{T})]

                   =\sum_{n=-\infty} c_n e^{j\frac{2\pi nx}{T}}

       a_n =\frac{2}{T }\int_{t_0}^{t_0+T}f(t)cos\frac{2\pi n t}{T}dt

      b_n =\frac{2}{T }\int_{t_0}^{t_0+T}f(t)sin\frac{2\pi n t}{T}dt

     c_n=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{-j\frac{2\pi nt}{T}}


5.2      冲激串定义:

            是无限多个分离的周期为的冲激之和,


     s(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT_s)  

      w_s= 2\pi f_s

      

 

5.3    冲击串傅里叶级数

        取     t_0=-\frac{T_s}{2} ,计算傅里叶级数系数

       c_n=\frac{1}{T_S}\int_{-T_s/2}^{T_s/2}s(t)e^{-jW_snt}dt

           把上面s(t)展开,根据狄拉克函数的性质

            c_n=\frac{1}{T_s}\int_{- T_s/2}^{T_s/2}\delta(t)e^{-jW_s nt}dt

             =\frac{1}{T_S}

         则:

      s(t)=\frac{1}{T_S}\sum_{n=-\infty}^{\infty}e^{jW_s nt}

     对其做傅里叶变换

    F(s(t))=\frac{1}{T_S}\int (\sum_{n=-\infty}e^{jW_snt}) e^{-jwt}dt

                   =\sum_{n=-\infty}\frac{2\pi}{2\pi *T_S}\int ( e^{jW_snt}) e^{-jwt}dt

                  =\sum_{n=-\infty}w_s/(2\pi )\int (e^{jW_snt}) e^{-jwt}dt 利用 公式2

     设 g(w)=2\pi \delta(w-nw_s)

     对其做傅里叶逆变换

     f(t)=\frac{1}{2\pi}\int 2\pi \delta(w-n w_s)e^{jwt}dw

                  =e^{jnw_s t}

      所以F(e^{jnw_st})=2\pi \delta(w-nw_s) 公式2 

     把公式2 带入 公式1

    F(s(t)) = \sum_{n=-\infty}\frac{w_s}{2\pi}2\pi\delta(w-nw_s)

                     =w_s\sum_{n=-\infty}^{\infty}\delta(w-n w_s)

 狄拉克函数性质:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值