要回答人工智能现在的发展前景,我们得分清楚是问就业前景还是技术前景。
有人会说,技术前景和就业前景不是一回事吗?如果技术马上要改变世界了,现在来从事这个行业不是妥妥的风口上的猪吗?
其实真不是,由于前几年人工智能专业的供过于求和互联网行业的萎缩,如果有人现在让你去研究人工智能算法,那反倒是49年入国军了。
下面我结合自己的经验和应用,大概说说这行的发展前景,供感兴趣的朋友或准备入行的小伙伴参考。
- AI岗位现在的就业前景
- AI技术现在的最新发展
- AI行业的发展路线
- AI技术的学习和发展前景
- 求职和面试的建议
1. AI岗位现在的就业前景
过去,人工智能行业的主要目标岗位是算法岗,但现在已经不再是热门职位了。你会看到,BAT等大厂们给以往那些算法高手们的舞台,如今已经逐渐收缩,不再是主角。今年在商汤、旷视等一线AI独角兽公司,算法岗位竞争也异常激烈,竞争比例甚至达到了惊人的100:1,使得这个曾经光芒四溢的岗位,如今比公务员还夕阳。
在这样的情况下,只因为追热点而选择人工智能算法工作,可能会让你陷入高不成低不就的窘境。如果没有非常强大的特长,非211院校的学生很难在这些AI独角兽公司找到算法岗位。就像在2023年,腾讯XR、字节Pico等都遇到了"优化"的问题。
为什么这么多大学科班的人工智能专业都很难就业呢?我们要知道,AI需要涉及数据挖掘和预处理,需要关注性能优化和工具维护,甚至需要编写并行代码和调度逻辑,以实现更快速、高效的算法和模型。这就意味着,AI不再仅仅依赖于算法本身,它需要的是实践、创新和工程方法。
此外,AI不仅仅依赖于数据驱动,还有许多行之有效的方法论。纯粹的数据驱动可能效率较低,因此AI可能逐渐发展为一门以工程为主的学科。
看到这里,你可能会想:“那我没有高学历,我怎么进入AI行业?”别担心,即使没有高学历,只要掌握一些基本的工具和技术,比如pytorch,就能够找到一些小众任务来提高自己的实践能力。
在面试时,我们AI行业也更加关注项目经验,而不是专业知识和八股题。因此,只要能展示出实践能力和解决问题的能力,就有机会获得理想的工作机会,不必担心学历问题。
而且,虽然今天的算法岗可能日渐黯淡,但也没必要对人工智能行业感到担忧。让我告诉你一个秘密:AI的大门并未关闭,它只是转向了一扇新的门,洗牌后可能会打开更广阔的就业市场。
2. AI技术的最新发展
另一方面,技术前景又确确实实是一日千里。
现在AI的发展达到什么高度了呢?近日,国内AI创业者、前搜狗创始人王小川在接受采访时表示,OpenAI在2023年7月推出的代码解释器(code interpreter)被大家低估了。国内对此并没有形成新一轮的媒体狂潮,可能有些人对这个新技术的潜力还不够了解。我对此深感认同。
晒一张我平时用的代码解释器应用场景吧。
几个月前,用过GPT4(包括当时很火的Copliot)写代码的人都知道,GPT4写一个函数的代码问题不大,即使出了bug,把报错复制给它也能很快改好。但是要写一个APP就不行了,其代码量和复杂度远远超过了GPT4目前4096个tokens的限制,更不用说文档和数据库结构了。
但是我们现在只需要把代码包、文档、思路等等全部打包扔给代码解释器,它就会自己写代码解压缩,分析每个文件,并且依据小程序接口文档来写前后端代码了。
不客气的说,OpenAI推出的code interpreter是比GPT4还要重要的里程碑,标志着AI技术从大模型(LLM)开始向智能体(Agents)领域迈进。
简单来说,大语言模型只是处理语词之间的关联,之前我们常说AI会编造,也是因为它只是输出关联最大的词汇。但智能体则是指AI有意识地借助工具和手段开始解决实际问题。
这一进展的意义在于,AI不再仅仅是一个语言处理工具,而是可以成为解决实际问题的代理人。通过code interpreter,AI可以更加智能地理解和应对编程问题,为开发者提供更贴心、高效的代码解决方案。
对于潜在用户来说,这意味着AI将成为他们工作中不可或缺的助手。无论是在编程过程中遇到困难,还是需要快速找到高质量的代码示例,AI都可以为他们提供明智和有说服力的选择建议。
如果说现在学人工智能是49年入国军,那学JS、iOS开发等等,岂不是49年入清军了?
而且,代码解释器这玩意之所以没火,这个名字确实没有起好。它不但能处理代码、做图表,视频剪辑等等一切有现成工具可用的领域都可以用这个技术。
随着人工智能的不断发展,它将在各个领域发挥重要作用,为用户提供更加智能、便捷的解决方案。因此,对于有技术背景的人来说,了解并应用这些最新的AI技术将是一个明智的选择。
当然,AI的发展并不仅仅意味着它将接管我们的工作,而是它将成为我们更好地完成工作的工具。
3. AI行业的发展路线
在2023年,AI行业迎来了新的风口,AIGC、ChatGPT、Stable Diffusion等技术正兴起,这为AI的应用开启了新的可能性,引起了互联网公司和职场人士的关注。在这种变化的环境下,了解并预测行业趋势,以便在职业发展上做出明智的决定,变得至关重要。
我们要注意到,AIGC的兴起对互联网算法岗位的影响。这些新的技术如ChatGPT、Stable Diffusion为内容生成领域提供了新的思路,具有深入探究和学习的价值。无论你是算法工程师还是对此感兴趣的求职者,这都是一个值得深挖的领域。相信在这个兴起的领域中,你将有机会为公司提供创新的解决方案,开拓自己的职业生涯。
同时,拓宽自己的技能范围也是必要的,例如学习数据分析、机器学习等相关知识。随着人工智能的发展,这些技能将在市场上有更广泛的就业机会,能更好地应对行业变化和满足工作需求。
我们也要看到,大公司对于开发岗位的需求逐渐减少。这个趋势可以从过去几年大公司对P2P网贷平台、教辅和电商活动的需求中看出。所以,对于开发岗位的求职者,可能需要考虑转向其他有前景的领域。
目前,机器学习已经成为各个专业学生的必备技能,这显示了它在不同领域的广泛应用和重要性。
例如,在制造业中,人工智能和计算机视觉技术的应用前景广阔,尤其在制造大国如中国。另外,在现代服务业,随着科技的发展,人工智能的需求也会逐渐增加,长远来看,它的应用前景也是蛮乐观的。
当然,虽然发展路线有很多,但并不是每个方向都适合学习,有一些方向受到行业的限制,有一些方向则只适合卷王体质。
4. AI技术的学习和发展
那么,有哪些技术方向是人工智能行业的“天坑”呢?
正如我们观察到的,目前学术界的热点正在从感知智能转向认知智能。在这个过程中,基础算法如ResNet、SSD、YOLO、UNet、FaceNet和ArcFace等仍然是重要的工具,但他们的模块化程度越来越高,技术含量逐渐降低。这使得市场上掌握这些技术的人越来越多,竞争空前激烈。因此,这个领域的发展潜力不是我推荐的主要方向。
**另一方面,AutoML和模块化算法的应用正在兴起,我们应该重点关注这两个方向。**AutoML能自动搜索模型架构,使得人工智能开发过程更加智能化、便捷化。同时,对模块化算法的掌握和应用,可以帮助我们更好地完成实际工作,提高效率。这两个方向都具有很高的实用价值和广阔的发展前景。
我还建议关注一些未来可能会有更大影响力的领域,如计算机视觉(CV)、自然语言处理(NLP)、知识图谱(KG)和强化学习(RL)。这些领域仍然有许多未解决的问题,需要我们去发现和探索。
**在这些领域中,我尤其推荐CV和RL。**原因是,这两个领域的技术在中国更容易应用于实际行业中。作为一个制造大国,中国的工厂可以广泛应用CV和RL技术。这为CV和RL技术提供了实际应用的基础,也为从事相关工作的人提供了更多的机会。相比之下,NLP和KG技术在中国的实际应用相对困难,因为中国的服务业发展相对滞后。
**我还要特别提一下搜广推(搜索、广告和推荐)。**这是互联网工业界目前最重要的应用场景之一。这三个场景虽然不同,但它们之间的算法技术是高度相关的。在这个方向上工作的人往往有着广泛的就业机会。搜广推涉及到自然语言处理(NLP)、计算机视觉(CV)和传统机器学习(ML)等技术。这个领域的复杂性和多样性为那些寻求挑战和希望从事有影响力工作的人提供了机会。
最后,我想强调的是,无论你选择哪个方向,对深度学习和数学语言的理解都是必不可少的。
5. 求职和面试的建议
未来的企业生态可能将以AI为中心,而不再以大型AI公司为主。因此,我们在寻找AI和算法相关的工作时,应扩大视野,不仅关注大公司,还需注重中小规模的公司。这些公司可能专注于工业检测、物流机器人、自动驾驶、智能安防、智能医疗和智能客服等领域的产品研发。
这种职业选择不仅需要对公司的选择进行深思熟虑,更需要考虑自身的专业技能。如果你的算法技能尚待提升,你也可以选择从事前后端、客户端开发等其他岗位,以便积累经验和技能,逐步实现职业目标。
同时,不要忘记互联网的算法岗位需求仍以搜索、广告和推荐(搜广推)为主,开发岗位的需求同样庞大。在这个环境中,有深度的专业技能和解决问题的能力是至关重要的。
在求职过程中,你可能会遇到挫折,如面试失败。然而,这并不是你能力的全部反映。每个人都可能遇到失败,即使是顶级的专家也可能在某次面试中表现不佳。面对失败,不应过分自我评价,而应将其视为一个学习和成长的机会。反思你的不足,并决定如何改进,这比单纯的自我评价更有价值。
最后,记住一件事:不要轻易放弃。在职业生涯中,每个人都会遇到自我怀疑的时刻,感到困惑,甚至想要放弃。但请记住,成功往往出现在坚持的最后一刻。抓住每一次机会,用你的实践能力和解决问题的能力来证明你的价值,你一定能找到合适的职业发展方向。
希望我的观察和建议对你有所帮助。记住,最重要的是选择一个你真正热爱并愿意投入时间和精力的领域。
免费资料包
另外还有免费的AI大模型学习资料包,供你学习。点击下面的卡片就可以免费领,具体有:
👉AI大模型学习路线汇总👈
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
本文转自 https://blog.csdn.net/zz12345600354/article/details/140004970?spm=1001.2014.3001.5501,如有侵权,请联系删除。