Caffe: Convolutional Architecture for Fast Feature Embedding

Caffe: Convolutional Architecture for Fast Feature Embedding

1. Caffe

https://caffe.berkeleyvision.org/

Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license.

University of California, Berkeley,UC Berkeley,Berkeley,Cal or California:伯克利加利福尼亚大学,加利福尼亚大学伯克利分校,加州大学伯克利分校,伯克利大学,伯克利加大,伯克利加州大学
Berkeley Software Distribution or Berkeley Standard Distribution,BSD:伯克利软件包
clause [klɔːz]:n. 子句,从句,分句,(法律文件的) 条款
modularity [mɒdjʊ'lærɪtɪ]:n. 积木性,模块性,模组化

1.1 Caffe Model Zoo

http://caffe.berkeleyvision.org/model_zoo.html
https://github.com/BVLC/caffe/wiki/Model-Zoo

1.2 Installation

http://caffe.berkeleyvision.org/installation.html

2. Caffe - GitHub

https://github.com/BVLC/caffe

Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and community contributors.
Caffe 是一个兼具表达性、速度和思维模块化的深度学习框架,由 Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and community contributors 开发。

2.1 OpenCL Caffe

https://github.com/BVLC/caffe/tree/opencl

2.2 Intel Caffe

https://github.com/BVLC/caffe/tree/intel

2.3 Windows Caffe

https://github.com/BVLC/caffe/tree/windows

2.4 Development and Contributing

http://caffe.berkeleyvision.org/development.html

3. Documentation

Caffe Tutorial
http://caffe.berkeleyvision.org/tutorial/

Class List
http://caffe.berkeleyvision.org/doxygen/annotated.html

3.1 Layers

http://caffe.berkeleyvision.org/tutorial/layers.html

References

https://yongqiang.blog.csdn.net/
Caffe: Convolutional Architecture for Fast Feature Embedding

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yongqiang Cheng

梦想不是浮躁,而是沉淀和积累。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值