The Comprehensive Cars (CompCars) dataset - 车辆精细识别数据集 - surveillance-nature images

The Comprehensive Cars (CompCars) dataset - 车辆精细识别数据集 - surveillance-nature images

surveillance-nature images - 车辆颜色标注解析

(1) The surveillance data are released as “sv_data.*”.

在这里插入图片描述

(2) sv_data.zip -> 解压到当前文件夹 -> sv_data

在这里插入图片描述

(3) directory

在这里插入图片描述

test_surveillance.txt
train_surveillance.txt
README
This part of data is the surveillance-nature data in the CompCars dataset.
(http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html)

If you use the dataset in your work, please cite our CVPR 2015 paper:
A Large-Scale Car Dataset for Fine-Grained Categorization and Verification

Descriptions of the files are as follows:

  • image:
    Stores all car images in the path format ‘surveillance_model_id/image_name.jpg’.

  • color_list.mat:
    A MATLAB cell matrix containing all color annotations for each image. Each row is the annotation for one image with the first element being the path of the image and the second element being the color id. The meaning of the color ids are: -1 - unrecognized, 0 - black, 1 - white, 2 - red, 3 - yellow, 4 - blue, 5 - green, 6 - purple, 7 - brown, 8 - champagne, 9 - silver.

  • sv_make_model_name.mat:
    A MATLAB cell matrix containing make and model names for each ‘surveillance_model_id’. For one ‘surveillance_model_id’, sv_make_model_name{surveillance_model_id,1} and sv_make_model_name{surveillance_model_id,2} are the corresponding make and model name. sv_make_model_name{surveillance_model_id,3} is the ‘model_id’ of the same model in the web-nature data. For each model in the surveillance data, there is a same model in the web-nature data.

  • train_surveillance.txt, test_surveillance.txt:
    The train/test splits for the fine-grained classification experiments on surveillance data described in

  • the updated arXiv paper:
    A Large-Scale Car Dataset for Fine-Grained Categorization and Verification

data_preprocessing

CompCars/data_preprocessing

在这里插入图片描述

mat_file_color_list.py

mat_file_color_list.py
color_list.mat

#
# Created by foreverstrong on 12/27/2018
#

# !python
# !/usr/bin/env python

'''python
Each row is the annotation for one image with the first element being the path of the image and the second element being the color id.
The meaning of the color ids are:
-1 - unrecognized, 0 - black, 1 - white, 2 - red, 3 - yellow, 4 - blue, 5 - green, 6 - purple, 7 - brown, 8 - champagne, 9 - silver.
'''

from scipy.io import loadmat
import shutil
import os

color_classes = ["black", "white", "red", "yellow", "blue", "green", "purple", "brown", "champagne", "silver"]
sv_data_image_directory = "./sv_data/image"
color_list_mat_file = "./sv_data/color_list.mat"
sv_color_data = "./sv_color_data"


def recursive_directory_creation_function(sv_color_data, color_classes):
    for color_name in color_classes:
        color_name_directory = sv_color_data + '/' + color_name
        if not os.path.exists(color_name_directory):
            os.makedirs(color_name_directory)


def main(color_classes, sv_data_image_directory, color_list_mat_file, sv_color_data):
    color_list_mat = loadmat(color_list_mat_file)
    print(color_list_mat["__version__"])
    print(color_list_mat["__header__"])
    print(color_list_mat["__globals__"])

    color_list_array = color_list_mat["color_list"]
    print(len(color_list_array))

    recursive_directory_creation_function(sv_color_data, color_classes)

    for color_list_element in color_list_array:
        image_name = str(color_list_element[0][0])
        color_index = int(color_list_element[1][0][0])

        if color_index <= -1:
            continue

        if color_index > 9:
            continue

        image_file = sv_data_image_directory + '/' + image_name
        if os.path.exists(image_file):
            image_file_dir = sv_color_data + '/' + color_classes[color_index]
            shutil.copy("%s" % (image_file), "%s/" % (image_file_dir))
        else:
            print("File does not exist.")
            print(image_file)
            continue
    pass


if __name__ == "__main__":
    main(color_classes, sv_data_image_directory, color_list_mat_file, sv_color_data)

将标注数据解析,依照颜色放置到相应文件夹中。
注意: 颜色标注个别存在问题,需求人工进行数据过滤 data cleansing or data cleaning。

/usr/bin/python3.5 /home/strong/CompCars/data_preprocessing/mat_file_color_list.py
1.0
b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Thu Sep 24 14:56:52 2015'
[]
44481

Process finished with exit code 0

在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yongqiang Cheng

梦想不是浮躁,而是沉淀和积累。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值