首先进入anaconda目录创建一个名为Gym的文件夹
否则会报错:
然后要注意指定python版本:
conda install --name Gym python=3.6.6
然后如果已经在虚拟环境下了,此时需要首先退出虚拟环境,否则激活Anaconda环境命令无效果:
(如果你没有使用虚拟环境,那么忽略deactivate)
activate Gym
这样就完成了环境的激活,查看conda帮助下载了哪些包:
此时从国内镜像下载对应的Gym
pip install gym -i https://pypi.tuna.tsinghua.edu.cn/simple
2020.12.28 更新,近期anconda清华源不稳定,可以使用下面的命令下载:
如果遇到问题CondaHTTPError: HTTP 000 CONNECTION FAILED,参考这个博客可以解决:https://blog.csdn.net/qq_33757398/article/details/105243889,重启电脑之后,再使用下面的命令下载:
pip install -timeout=100 --upgrade --ignore-installed gym
清华就是快,接着就可以开始测试了:
然后关联好用的python IDE ----->> pycharm (社区版的对于研究已经足够,如果要做Django,flask开发,用专业版的会顺手很多,联想输入啥的比较好)
即选择python解释器为刚才conda创建的解释环境即可:
首先搞一个新项目:
非常智能,只要点击conda就会自动查询所有存在的环境供选择,这里选择刚刚创建的环境Gym
然后新建一个python文件:
在项目中粘贴以下代码:
import gym
def main():
env = gym.make('CartPole-v0')
for i_episode in range(20):
observation = env.reset()
for t in range(100):
env.render()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
if __name__ == "__main__":
main()
然后就开始自己训练了:
神奇的是只经过了53轮就完成了平衡训练: