深度医疗是笔者基于深度学习的医学项目应用开发实践,经过整理输出了文档和本系列课程,希望通过分享可以和大家共同讨论、相互学习,探索更好的解决方案。笔者是一名普通的大数据和人工智能领域从业者,过程中如有错误和理解不到位的地方请广大同仁不吝赐教。笔者一直坚信深度学习和医学的有机结合一定能碰撞出性能强大的深度医疗系统,服务大众。
本文主要介绍了通过深度学习进行心电图特征识别的应用,首先简单介绍了心电图医学背景和相关知识,接着介绍了目前能获得的公开的心电图数据集,最后介绍了神经网络的实现方式和处理后的效果以及性能分析。
1.什么是心电图
心脏在收缩跳动过程,心肌内的电流产生在前,心肌机械性收缩在后,应用心电图机以图形形式记录这些心肌电流的变化就叫做心电图。大家对心电图应该都有直观的印象,我们去医院体检一般都有这项功能的检测。通过传感器的连接检测,会在终端打印出一张如下面所示的图,这个就是记录心脏整个生理周期过程的心电图。
心电图每一个横格代表时间为0.04秒,每一个纵格代表电压为0.1毫伏;1个大格=5个小格=0.04秒x5=0.2秒。所以可以得到下面的对应关系,这样就可以简单的通过纸上坐标快速得出心律的跳动次数。
心电图传感器不同的连接方式对应不同的导联方式,主要分为下列两种
肢体导联方式:
标准导联Ⅰ:左上肢接正极&#x