深度学习ECG分类

ECG分类简要介绍

本篇内容属于ECG(心电图)分类方法的整理,用于了解ECG分类的流程。传统的时间序列分类方法高度依赖于提取的特征。深度学习算法对ECG信号的检测一般分为三个步骤:信号预处理,特征学习,ECG分类。本篇内容重点关注不同网络架构的性能表现,比如准确度,特异性和敏感性等性能指标。

基于专家知识的特征提取是耗费时间且容易出错的,并且提取的特征在许多变化方面(平移,噪声,缩放和位移)是不鲁棒的。为了自动检测心电图中的心律失常,算法应该隐式识别不同的波形并推断它们之间的关系。

下面介绍ECG分类的评价指标,通常使用准确率,灵敏度,特异性,阳性预测性,F-score。首先了解一些对象:

  • TP(True Postive):实际为正样本,预测为正样本;
  • FN(False Negative):实际为正样本,预测为负样本;
  • FP(False Postive):实际为负样本,预测为正样本;
  • TN(True Negative):实际为负样本,预测为负样本;

准确率(Accuracy)用于测量整体预测性能: A c c = T P + T N T P + T N + F P + F N A_{cc}=\frac{TP+TN}{TP+TN+FP+FN} Acc=TP+TN+FP+FNTP+TN灵敏度(Sensitivity)也称为召回率,是所有正例事件中被正确分类为正例的占比,Recall可以衡量模型对正例事件的识别能力: S e n = T P T P + F N S_{en}=\frac{TP}{TP+FN} Sen=TP+FNTP特异性(Specificity)是所有负例事件中被正确分类为负例事件的占比,衡量模型对负例事件的识别能力: S p e = T N T N + F P S_{pe}=\frac{TN}{TN+FP} Spe=TN+FPTN阳性预测性(Postive Predictive Value,PPV)也称为精确率(Precision),是在所有预测为正例事件中正确分类为正例事件的占比: P p v = T P T P + F P P_{pv}=\frac{TP}{TP+FP} Ppv=TP+FPTPF-score综合考虑阳性预测性(精确率)与灵敏度(召回率)的调和: F s c o r e = ( 1 + β 2 ) P p v S e n β 2 P p v + S e n F_{score}=(1+\beta^{2})\frac{P_{pv}S_{en}}{\beta^{2}P_{pv}+S_{en}} Fscore=(1+β2)β2Ppv+SenPpvSen F 1 = 2 T P 2 T P + F P + F N F_{1}=\frac{2TP}{2TP+FP+FN} F1=2TP+FP+FN2TP β = 1 \beta=1 β=1时,称为F-1,此时表明,精确率和召回率都很重要,若精确率更重要则调整 β < 1 \beta<1 β<1,若召回率更重要则调整 β > 1 \beta>1 β>1

鲁棒性指的是控制系统在一定结构,大小的参数变动下,维持它某些性能的度量。在异常或危险情况下,该性能是确保系统安全的关键。


鲁棒性是控制论中的词语,主要是指在某些参数略微改变时,系统仍然具有稳定性和有效性;(关于模型参数的鲁棒性)

如果模型具有鲁棒性,则当我们微调其参数时,也可以确保模型性能不会产生过度的变化;

模型的鲁棒性也包括输入数据的微小改变:对输入信号增加微小的噪声,模型性能不会出现太大偏差;(关于输入信号的鲁棒)

泛化性是指根据有限样本训练的系统,对其他变量域也具有良好的预测能力,此处注意,其他变量域通常要求和训练样本具有近似的分布。


ECG分类过程

数据预处理

常用的数据集有PhysioNet和MIT-BIH,PhysioNet是一个不断扩充,免费提供大量生理信号以及相关处理工具的资源网站。数据来源于正常人以及一些病人(心脏猝死,心力衰竭,心律失常等)。其拥有50个心电信号的数据库,共10,000个心电信号数据。PhysioNet / / /Computing in Cardiology Challenge 2017(CinC17)使用广泛,共包含8528个心电信号用于训练和3658个信号用于测试。

MIT-BIH是国际公认的标准心电数据集。包含了48条记录,每条记录包含半小时的通道持续时间的双通道ECG信号。下面是每种心电节拍的数量:
fig1
另外,CCDD(Chinese Cardiovascular Disease Database)被用于研究面向临床的ECG分析。

对于数据处理,ECG信号预处理包括消除噪声,基线漂移和数据增强。对于输入到模型的信息还需要进行处理,ECG分类的基础是检测R波峰,因此,定位心跳节拍,心跳周期如下图所示:
fig2
心脏电活动的去极化表现为P波和QRS波,心脏电活动的复极化表现为心电图上的T波,其中,PR,ST分别表示心电图上的P-R波段和S-T段。通常使用小波变换提取ECG的QRS波。

ECG特征提取

特征提取即从波形信号提取其中的特征。基于小波变换提取的特征通常和SVM,KNN等分类器联合使用。在深度学习中,特征提取和分类器在同一个网络中执行,网络既要学习特征,又要学会分类特征。用于网络中的经过预处理的信号,有两种方式作为输入信息:

  • 一种是将分割后的节拍信息输入到网络中;
  • 另一种是将信号转换到频域,再进行特征提取;

在目前关于多网络架构的研究中,常使用卷积网络作为特征提取器,将长短期记忆模型用于学习心律节拍信息。大部分经过训练的网络都已表现出良好的性能。

目前ECG还存在的问题有:

  • 心电信号预处理方面,对是否需要处理存在一定的争论,有的研究表明未处理的信号因为噪声存在一定的失真。有的研究表明,通过小波变换等处理后的信号特征有缺失,不能完全表达原始信号。
  • 有的网络表现仅限于部分心电信号的异常分类,没有结合临床数据训练网络而不具备泛化性。
  • 有的网络虽然表现良好,但缺乏计算效率。
  • 有的网络表现良好,但不能完全代替医生的操作,缺乏特征上的可解释性。

Reference

Tang Jianjun, Li Xingxiu, Hua Jing, Yang Fuhao. A review of electrocardiogram detection and classification based on neural network [J]. Computer Applications and Software, 2021, 38(05): 1-9+41.

  • 10
    点赞
  • 89
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ECG分析是一种用于检测心脏疾病的方法,而基于深度学习ECG心律失常分类则是一种新兴的技术。这种技术利用深度学习算法对ECG数据进行分析和分类,以便更准确地诊断心脏疾病。这种技术的入门需要掌握深度学习的基本原理和ECG数据的基本知识,同时需要了解常见的心律失常类型及其特征。通过学习和实践,可以逐步掌握这种技术,并在实际应用中取得良好的效果。 ### 回答2: ECG分析是指通过对心电图(ECG)数据进行处理和分析,得出心脏的生理状况和心律失常的情况。而基于深度学习ECG心律失常分类则是一种新兴的、快速而准确的心律失常诊断方法,可以在短时间内对不同类型的心律失常进行自动识别和分类。下面将介绍ECG分析中使用深度学习技术的基本原理。 ECG信号是一种时间序列信号,包含不同的波形特征,例如P波、QRS波和T波等,这些波形特征反映了心跳时心肌的电生理变化。基于深度学习ECG心律失常分类可以分为三个步骤: 第一步是数据预处理,包括数据清洗、信噪比提高等,这是保证模型准确性的关键步骤。 第二步是特征提取,这是深度学习方法的核心。传统的特征提取方法是基于图像处理、信号处理等领域,需要大量的人工设计。而基于深度学习的特征提取则是通过网络学习参数,自动地找到最能区分不同心律失常的特征。常见的网络结构包括卷积神经网络(CNN)和循环神经网络(RNN)等。 第三步是模型训练和测试。通常,我们将数据集划分为训练集、验证集和测试集三部分,用训练集来训练模型,用验证集来选择最优的模型超参数,用测试集来测试模型的准确性。模型的准确性可以用准确率、召回率、F1值等指标进行评价。 总之,基于深度学习ECG心律失常分类具有高效、准确、自动化等优势,可以大大提高ECG信号的处理速度和心律失常的诊断准确性,对心血管疾病的早期预防和治疗具有重要意义。 ### 回答3: ECG(电生理图)是评估心脏健康状况的重要工具。ECG在医生的指导下具有高精度和可靠性,但是ECG检查的数量庞大,医生需要花费大量时间和精力来进行ECG分析。深度学习技术已经被应用于ECG分析中,以实现较高的自动化程度。 基于深度学习ECG心律失常分类技术旨在通过机器学习来处理ECG数据,以自动分类心律失常。常见的ECG心律失常包括心房颤动、心室颤动、心房扑动、快速地、慢速的、心动过缓、心动过速等等。 ECG数据的分析可以通过传统的机器学习方法实现,但这种方法的准确度和性能通常较低。深度学习技术可以在更高水平上对ECG数据进行分析,从而实现更准确、更可靠的分类。 基于深度学习ECG心律失常分类技术通常需要三个关键组件: 1. 数据集:深度学习模型需要大量的数据来进行训练。ECG数据集应具有多样性,因为ECG数据在不同人群中可能存在差异。 2. 深度学习模型:深度学习模型是ECG分类的核心。现在有许多ECG分类模型可以使用,例如卷积神经网络(CNN)和递归神经网络(RNN)。 3. 训练和测试:训练和测试是深度学习模型的关键步骤。在训练期间,模型从数据集中学习数据的特征和模式。测试过程评估训练后的模型的性能,以确定它在分类ECG心律失常方面的精度和可靠性。 总之,基于深度学习ECG心律失常分类技术通过自动化分类ECG数据,可以帮助医生更快速、准确地诊断ECG心律失常。尽管仍需更多的研究和开发,但这项技术的潜力很大,可以提高医疗保健的效率和质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值