通用的文本相似度计算

本文介绍了在IT技术中,如何使用最长公共子序列(LCS)、Jaccard相似度和余弦相似度来计算文本的相似度。通过动态规划实现LCS,Jaccard基于集合运算,而余弦相似度则考虑了向量空间模型。展示了如何在数据框中应用这些方法来衡量两列文本的相似程度。
摘要由CSDN通过智能技术生成

一、最长公共子序列
最长公共子序列(Longest Common Subsequence,LCS)是指两个或多个序列中共同出现的一段连续序列,它在多个序列中都保持相同的顺序和连续性。在计算机科学中,寻找最长公共子序列是一个经典问题,通常通过动态规划算法解决。
动态规划算法解决最长公共子序列问题的步骤如下:

  • 初始化状态数组:创建一个二维数组dp,其大小为(m+1)×(n+1),其中m和n分别是两个序列的长度。dp[i][j]表示序列1的前i个字符与序列2的前j个字符的最长公共子序列的长度。
  • 填充状态数组:遍历两个序列,对于每一对字符,如果它们相同,则dp[i][j] = dp[i-1][j-1] + 1;如果不同,则dp[i][j] = max(dp[i-1][j], dp[i][j-1])。
  • 找到最长公共子序列:dp数组的最后一个元素dp[m][n]就是两个序列的最长公共子序列的长度。可以通过回溯的方式找到具体的子序列。

python代码如下:

## 最长公共子序列计算最长公共子串-------------------
def LCS(str_a, str_b):
	if len(str_a) == 0 or len(str_b) == 0:
		return 0
	dp = [0 for _ in range(len(str_b) + 1)]
	for i in range(1, len(str_a) + 1):
		left_up = 0
		dp[0] = 0
		for j in range(1, len(str_b) + 1):
			left = dp[j-1]
			up = dp[j]
			if str_a[i-1] == str_b[j-1]:
				dp[j] = left_up + 1
			else:
				dp[j] = max([left, up])
			left_up = up
	return dp[len(str_b)]

#转换最长公共子序列为0-1之间的数值,结果越接近1,相似度越大
def LCS_Score(str_a, str_b):
	return np.round(LCS(str_a, str_b)*2/(len(str_a)+len(str_b)),2)

#LCS_Score(str_a, str_b)    


## 对dataframe的2列按照最长公共子序列计算相似度
## df: 数据来源变量
## col_name1、col_name2:用于计算相似度的2个列名
## simarity_score_name: 返回的相似度结果的列名
## 返回数据框,则simarity_score_name是用该计算方法对2列文本相似度的计算结果
def df_simarity_lcs(df , col_name1 , col_name2 , simarity_score_name):
    df[simarity_score_name] = list(map(lambda str_a, str_b:LCS_Score(str_a, str_b),df[col_name1],df[col_name2]))
    return df

二、Jaccard相似度(Jaccard Similarity)
基于集合的交集与并集的比值来计算相似度。
适用于短文本或关键词列表的比较。

## 采用集合的方法计算2个集合的相似度
def similarity(a, b):
    try:
        return len(a & b) / len(a | b)
    except ZeroDivisionError:
        return -1e-4

## 采用集合的方法计算一个数据框中2个列的文本相似度
## df: 数据来源变量
## col_name1、col_name2:用于计算相似度的2个列名
## simarity_score_name: 返回的相似度结果的列名
## 返回数据框,则simarity_score_name是用该计算方法对2列文本相似度的计算结果
#对dataframe的2列按照集合的方法计算相似度          
def df_simarity_jh(df , col_name1 , col_name2 , simarity_score_name):
    df[simarity_score_name] = list(map(lambda str_a, str_b:similarity(set(str_a), set(str_b)),df[col_name1],df[col_name2]))
    return df 

三、余弦相似度(Cosine Similarity):
通过计算两个文本向量在空间中的夹角余弦值来评估它们的相似度。
通常与词袋模型(BOW)或TF-IDF结合使用。

## vec1, vec2:待计算的向量
## 返回2个向量的相似度
def cosine_simi(vec1, vec2):
    from scipy import spatial
    return 1 - spatial.distance.cosine(vec1, vec2)

## 对dataframe的2列按照最长公共子序列计算相似度
## df: 数据来源变量
## col_name1、col_name2:用于计算相似度的2个列名
## simarity_score_name: 返回的相似度结果的列名
## 返回数据框,则simarity_score_name是用该计算方法对2列文本相似度的计算结果 
def df_simarity_cosine(df , col_name1 , col_name2 , simarity_score_name):
    df[simarity_score_name] = list(map(lambda str_a, str_b:cosine_simi(str_a, str_b),df[col_name1],df[col_name2]))
    return df
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值