嵌入式机器学习平台Edge Impulse图像分类 – 快速入门

陈拓 2025/05/08-2025/05/11

1. 简介

  • 官方网址

https://edgeimpulse.com/

适用于任何边缘设备的人工智能:

Gateways - 网关

Sensors & Cameras - 传感器和摄像头

Docker Containers - Docker容器

MCUs, NPUs, CPUs, GPUs

构建数据集、训练模型并优化库以直接在设备上运行;从最小的微控制器到具有最新神经加速器的网关(以及介于两者之间的任何东西)。

构建 – 训练 – 优化 – 部署

2. 申请Edge Impulse上的一个免费帐户

3. 准备工作

为方便阅读,有的页面翻译成了中文,必要时附上英文页面对比。

3.1 登录账户

3.2 创建项目

  • 点击Create new project

点击 – 创建新项目

下拉找到 – 危险区域

 

3.3 启动入门教程

是的,清除我的项目

3.4 进入欢迎界面

欢迎界面在你第一次登录时也能看到。

选择 - 图像分类,构建我的第一个模型

4. 图像分类体验

4.1 第1步:确定模型应该分类的内容

选择两类物体,比如铅笔和电池。

4.2 第2步:使用手机收集图像

机器翻译将Impulse译为冲动。翻译为“流程”比较贴切,因为Impulse在这里表示端到端的处理流程 (数据输入 → 处理 → 模型输出)。

关于“使用手机收集图像数据”的文档见:

https://docs.edgeimpulse.com/docs/tutorials/data/data-ingestion/image-classification-mobile-phone

用手机上带二维码扫描的浏览器(我用小米浏览器)收集图像数据。

将手机连接到项目后,就可以开始拍摄图像并构建数据集了。通过手机的用户界面,可以快速收集图像。

收集的图像数据:

数据集:

4.3 第3步:设计你的冲动(Impulse)

鼠标点击主页面,进入Impulse参数配置页面,我们保持默认值。

点击右下角的简历教程按钮回到Impulse流程:

4.4 第4步:数字信号处理

DSP处理结果:

4.5 第5步:生成特征

生成特征,将原始图像数据转换为机器学习模型可理解的数值特征 。

等待成功:

查看特征:

4.6 第6步:训练神经网络

等待训练完成。

查看神经网络设置和模型训练结果:

4.7 第7步:测试模型

用手机扫二维码:

首先要在手机上构建项目,将模型部署到你的手机上,这个过程要几分钟的时间,接下来就可以测试了。

4.8 第8步:查看摘要

5. 模型改进和实验

如果有需要可以对模型进行改进和再实验。

6. 将模型部署到其他设备上

开发好的模型可以部署到很多其他设备上。

 

  • 默认部署

点击 – 部署,打开部署页面,显示默认部署 – 浏览器

用手机浏览器扫描二维码可以再次测试刚才模型。

  • 部署到其他设备

点击 - 搜索部署选项

选择你需要部署的目标设备、库以及其他选项。

比如,选择乐鑫的ESP32-EYE开发板:

进行部署配置和构建

有关在ESP32开发板上部署Impulses的细节,可以看Edge Impulse的官方文档:

“On your Espressif ESP-EYE (ESP32) development board”

https://docs.edgeimpulse.com/docs/run-inference/cpp-library/running-your-impulse-esp32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晨之清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值